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ABSTRACT
This paper introduces a model-based robust adaptive input-output control frame-
work for a family of robotic systems that include under-actuation, nonholonomic,
and constrained properties. The proposed control framework can provide fast and
effective controller generation for modular robotic systems (MRS) with interchange-
able subsystems. The controller was first derived based on the general properties of
nonholonomic robotic dynamic models while considering under-actuation and con-
straints. Then the adaptive control technique is introduced to overcome the effects
such as inertia and force uncertainties. Robust augmentation is implemented via in-
verse optimality theory, which is verified with respect to a meaningful cost function.
A simulation study on an aerial manipulator system with model uncertainty and
disturbance was provided to demonstrate the characteristics and effectiveness of the
proposed controller.

KEYWORDS
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1. Introduction

Modular and reconfigurable robotic systems (Davey, Kwok, and Yim (2012); Moubarak
and Ben-Tzvi (2012); Wei, Chen, Tan, and Wang (2011); Yim et al. (2007)) free
robots from being constrained to a fixed structure design, and thereby allow assem-
bling different robotic modules into different configurations for different applications.
A typical example of this concept is presented in Fig. 1, where an aerial manipulator
is assembled from UAV and manipulator subsystems. Note that this setting is very
similar to the classic spacecraft-manipulator problem (H. Wang (2011)) except that
for modular robotic systems (MRS), the modular components could have various types
and quantities, and they could be coupled with various constraints. This unique char-
acteristic of MRS leads to the modeling and control challenges that they need to
consider various modules and constraints as well as their combinations.

An efficient way to address the modeling challenge is to model each module sep-
arately and then, depending on the configuration, combine the individual dynamics
using constraints (Shah, Saha, and Dutt (2012)). This way, the vast model space
problem is simplified to a combinatorial problem of finite dynamic model libraries.
More importantly, the individual dynamics usually can be modeled beforehand, mak-
ing this approach more flexible than the whole-body modeling approach (Buschmann,
Lohmeier, Ulbrich, and Pfeiffer (2006)). However, introducing constraints into the sys-
tem will inevitably result in redundancy of states and sometimes involve nonholonomic
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Figure 1. A modular robotic system (aerial manipulator) combined from compatible modules

constraints and under-actuation (e.g. the quad-arm modules in Fig. 1). Therefore, an
essential feature to address the control challenge is to provide a solution for a con-
strained , nonholonomic and under-actuated robotic system.

Control methods that require configuration specific training (Melek and Golden-
berg (2003); Peters, Vijayakumar, and Schaal (2003)) and planning (Guo and Woo
(2003); Sugeno (1985)) are not usually applicable for this problem, which leads to
the selection of model-based control (MBC). However, MBC may not perform well
in practice due to model uncertainties and disturbances. Therefore, adaptiveness and
robustness are introduced to improve the practicability of controllers. A variety of
adaptive control methods have been widely studied and explored over years, as they
are frequently applied in control systems for various complex systems such as space-
crafts (J.-E. Slotine and Di Benedetto (1990); Yoon and Tsiotras (2008)) and robots
(Ortega and Spong (1988); J.-J. E. Slotine and Li (1987)). While a few researchers
considered the constraint characteristic (Arimoto, Liu, and Naniwa (1993); Whitcomb,
Arimoto, Naniwa, and Ozaki (1997)) and under-actuation characteristic (Gu and Xu
(1995); K.-D. Nguyen and Dankowicz (2015)) cases separately, the adaptive control
for systems with both characteristics is a relatively less explored topic.

Amongst the existing robust control methods, nonlinear robust control deals with
the nonlinearity of the system directly. As a class of nonlinear optimal control prob-
lems (Aliyu (2011); Freeman and Kokotovic (2008); Lewis, Vrabie, and Syrmos (2012)),
some nonlinear robust controllers require solving the Hamilton-Jacobi-Issac (HJI) par-
tial differential equation introduced by their cost functions, which remain a challenge
since the current algorithms (such as State Dependent Riccati Equation (SDRE)
(Cloutier (1997); Xin and Balakrishnan (2005))) cannot guarantee a globally opti-
mal solution. Alternatively, inverse optimality approaches the solution with respect to
a meaningful performance function based on a stabilizing Control Lyapunov Function
(CLF), which does not require online calculation and can obtain a globally optimal
solution. The technique has been applied to multibody systems such as spacecrafts
(Luo, Chu, and Ling (2005)) and legged robots (Ames, Galloway, Sreenath, and Griz-
zle (2014); Q. Nguyen and Sreenath (2015)). This also provides a potential solution
for the robust adaptive control framework, which has not yet been fully explored.

Therefore, this paper focuses on applying the existing inverse optimal robust adap-
tive control technique on a class of MRS, for which the whole body dynamics usually
incorporates non-holonomic constraints and under-actuation. Focusing on this unique
problem with considerations such as model uncertainties and external disturbances
usually apparent in MRS, this paper solves the problem by designing an inverse op-
timal robust adaptive controller. More specifically, the proposed controller has the
following features:
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Table 1. Notations.

‖z‖ Euclidean norm of vector z
z1×z2 Multiplications of quaternions z1 (4× 1) and z2 (4× 1)
z̄ Conjugation of quaternion z (4× 1)
zm×n A m× n matrix with all elements as z ∈ R
In Identity matrix of rank n (dimensions fit in its block if no subscript)
Z−T Inverse of the transpose of square matrix Z
Z+ Moore-Penrose pseudo inverse of a matrix Z
Z > 0 Square matrix Z is positive definite
Z < 0 Square matrix Z is negative definite
‖Z‖ L2 norm of matrix Z
LY Z Lie derivative of function Z(x) with respect to function Y (x)
{X\Y } The set of X excluding set Y where Y ⊂ X

(F1) The control law is applicable to a wide range of robotic systems due to the more
general nonholonomic constraints and under-actuation characteristics.

(F2) A systematic adaptive control approach is established for overcoming model un-
certainties in the system’s inertia properties and generalized forces, and guaran-
tees error convergence and adaptive parameters under proper conditions.

(F3) H∞ robustness augmentation is applied for L2 disturbance attenuation via in-
verse optimal theory. The integrated controller is proven to be globally optimal
for a meaningful cost function that leads to a global asymptotic convergence of
the corresponding robust adaptive control Lyapunov function (RACLF).

A sample simulation case on the aerial manipulator system shown in Fig. 1 was studied
to validate the proposed controller framework.

The outline of the remainder of this paper is as follows. Section 2 first reviews the
necessary theoretical background of MRS dynamics, model-based control and the in-
verse optimality for robust adaptive control, and then formulates the core problem to
be solved. Section 3 discusses the robust adaptive controller design and the proof of in-
verse optimality. Section 4 provides the simulation case-study of an aerial manipulator,
and Section 5 draws the conclusion of this research.

2. Theoretical Background and Problem Statement

This section presents the necessary theoretical background for model-based control and
robust adaptive controller through inverse optimality. These two components consti-
tute the foundation of the proposed controller in Section 3. The notations used in this
paper are shown in Table 1.

2.1. Modular Robotic System Dynamics and Model-Based Control

The dynamical model of a robotic system can be written as (Griffin and Grizzle (2017);
Kane and Levinson (1985); Kurdila and Ben-Tzvi (2019))

M(q, ξ)q̈= H(q, q̇, ξ) + JTu (q, ξ)u+ JTλ (q, ξ)λ (1a)

ξ̇= Jξ(q, ξ)q̇ + Ωξ(q, ξ) (1b)

where q ∈ Rnq is the generalized coordinate vector; u ∈ Rnu is the control input;
M ∈ Rnq×nq is the inertia matrix, which is positive definite; H ∈ Rnq is the unified
generalized force, which involves Coriolis forces, centripetal forces, potential energy
forces, and energy dissipation forces, etc.; and Ju ∈ Rnu×nq is the input Jacobian
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matrix. Note that Eq.(1) follows a nonholonomic formulation by adopting Eq.(1b)
that governs the dynamics of the nonholonomic state ξ ∈ Rnξ , where Jξ ∈ Rnξ×nq is
the nonholonomic Jacobian, and Ωξ ∈ Rnξ is the remaining nonlinear term of q and
ξ. An example of the nonholonomic state is the quaternion, which is often used to
describe the 3D rotation (Fresk and Nikolakopoulos (2013)). The relationship between
the quaternion coordinate ξquat ∈ R4 and the angular velocity ωquat ∈ R3 can be
written as

ξ̇quat = 0.5 (ξquat ×
[
0 ωTquat

]T
) (2)

Therefore, the quaternion cannot be explicitly expressed in terms of the integral of
angular velocity.

For systems with multiple modules, an easy way to acquire the whole body dynamics
is to assemble the modular component dynamics directly with appropriate constraints.
For a system with n modules, the dynamical model from Eq.(1) can be constructed
with the dynamical terms of its subsystems through

for X = M, Ju, Jξ : X = diag(X1, X2, · · · , Xn)

for X = q, ξ, u, H, Ωξ : X = [XT
1 , X

T
2 , · · · , XT

n ]T

where Xi (i = 1, 2, · · · , n) stands for a dynamical term (vector or matrix) from the
model equation (Eq.(1) of ith module; X = diag(X1, X2, · · · , Xn) denotes having
square matrices Xi as the diagonal components of the block matrix X, which is a
dynamical term of the assembled system. Therefore, the assembled dynamical model
incorporates all the model information of its modules. Modeling modular robots dy-
namics using this approach has the advantage of being able to quickly acquiring the
dynamics of the whole system without remodeling or rearranging individual proper-
ties. For instance, the inertial matrix inverse can be obtained efficiently by processing
the individual inertial matrix of each module in parallel, and applying the diagonal
block matrix

M−1 = diag(M−1
1 ,M−1

2 , · · · ,M−1
n−1,M

−1
n ) (3)

The coupling and interaction between the module dynamics is realized with the
Lagrange multiplier (constraint force) λ ∈ Rnλ . The constraint force and its direc-
tion characterized by Jλ ∈ Rnλ×nq are obtained from the constraint equations. The
dynamic model in Eq.(1)) is compatible with nonholonomic constraints, as long as
these constraints follow the representation in terms of the time derivatives as shown
in Eq.(4), where rλ : R+ × Rnq × Rnq × Rnξ → Rnλ is the constraint reference vector.

ṙλ(t, q, q̇, ξ) = Jλ(q, ξ)q̇; r̈λ = Jλq̈ + J̇λq̇ (4)

In most cases, r̈λ = 0; however, it may not necessarily be zero if the constraint is
defined as time varying or state dependent. Based on these properties, the constraint
force can be derived by substituting the q̈ from Eq.(1a) into Eq.(4), which results in

λ = Λ−1
λ (−JλM−1(H + JTu u)− J̇λq̇ + r̈λ) (5)

where Λλ = JλM
−1JTλ is defined as the constraint decoupling matrix. In this study,

the fully-constrained or over-constrained situation will not be considered. Therefore,
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the sufficient condition of (rank(Jλ) = nλ; nq > nλ) is provided to make sure that
the system is under-constrained. This condition also assures that Λλ is automatically
invertible. By substituting constraint forces into Eq.(1a), the state space dynamics
could be obtained as

ẋ =

 q̇

M−1ΦλH +M−1JTλ Λ−1
λ (−J̇λq̇ + r̈λ)

Jξ q̇ + Ωξ

+

 0
M−1ΦλJ

T
u

0

u (6)

where x =
[
qT q̇T ξT

]T
is the state vector and Φλ = (Inq − JTλ Λ−1

λ JλM
−1) is

defined as the mapper that maps the system from the unconstrained manifold to the
constrained manifold. A specific example of an MRS system with constraints and
nonholonomic states will be provided later in Section 4, where the modeling of the
aerial manipulator previously presented in Fig. 1 will be explained in detail.

To control this system, the frequently used MBC approach is to design output
functions such that the system is driven onto the desired manifold. As the system has
nq generalized coordinates and nu actuator inputs, a set of control outputs, y ∈ Rny
and its time derivatives, can be defined according to Eq.(7). The output function
h : R2nq+nξ → Rny is a class C2 function, and Ωh ∈ Rny is the remaining nonlinear
term of q and ξ. The restriction on h (ny ≤ min(nu, nq − nλ)) is a necessary condition
for the outputs to be controllable.

y = h(x); ẏ = Jh(q, ξ)q̇ + Ωh(q, ξ); ÿ = Jhq̈ + J̇hq̇ + Ω̇h (7)

With defining rh(t, x) : R+×R2nq+nξ → Rny as the reference function for y, the output
dynamics is

r̈h − J̇hq̇ − Ω̇h = JhM
−1ΦλH + JhM

−1ΦλJ
T
u u+ JhM

−1JTλ Λ−1
λ (r̈λ − J̇λq̇) (8)

Therefore, the control effort is derived in Eq. (9a) with the feed-forward controller uf
and feedback controllers ub defined in Eq. (9b) and Eq. (9c), respectively.

u =uf + ub (9a)

uf = Λ†u
[
(r̈h − J̇hq̇ − Ω̇h)− JhM−1

(
ΦλH + JTλ Λ−1

λ (r̈λ − J̇λq̇)
)]

(9b)

ub = Λ†uψ(t, y, rh) (9c)

where Λ†u = O−
1

2 (ΛuO
− 1

2 )+ is the weighted Moore-Penrose inverse term for the input
decoupling matrix Λu = JhM

−1ΦλJ
T
u , with the requirement of rank(Λu) = ny. O ∈

Rnu×nu (Righetti, Buchli, Mistry, and Schaal (2011)) is a symmetric positive definite

matrix. Apparently, Λ†u = Λ−1
u for ny = nu. Function ψ can be designed according to

the applied control scheme, e.g., a commonly used PD controller

uPD = Λ†uψPD = Λ†u
(
KP (rh − y) +KD(ṙh − ẏ)

)
(10)

2.2. Robust Adaptive Control via Inverse Optimality

Although the MBC works well in theory, it ignores the model uncertainties as well
as the external disturbances, both of which are frequently encountered in practice.

5
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Therefore, robust adaptive controller with inverse optimality was proposed. Consider
a system that contains model inaccuracy and disturbance, as in the following form

ẋ(t) = f(x) + g(x)u+ F (x)θ +G(x)w (11)

where x ∈ Rnx is the state vector, u ∈ Rnu is the input vector, θ ∈ Rnθ is the constant
uncertainty parameter vector, and w ∈ Rnw is the disturbance vector.

Definition 2.1. (Krstic and Deng (1998); Krstic and Li (1998); Luo et al. (2005)) For
the system in Eq.(11), a smooth function V (x, θ) : Rnx×Rnθ → R+ is a robust adaptive
control Lyapunov function, if there exists a function α(x, θ) smooth on {Rnx\{0}}×Rnθ
that satisfies α(0, θ) ≡ 0, a continuous function Q(x, θ) : Rnx×Rnθ → R+, and a matrix
Γ = ΓT > 0 so that the control law u = α(x, θ) satisfies

∂V

∂x

(
f + gu+ F

(
θ + Γ

(
∂V

∂θ

)T)
+G`γ(2‖LGV ‖)

(LGV )T

‖LGV ‖2

)
≤ −Q(x, θ) (12)

for the auxiliary control system of

ẋ = f + gu+ F

(
θ + Γ

(
∂V

∂θ

)T)
+G`γ(2‖LGV ‖)

(LGV )T

‖LGV ‖2
(13)

where γ(σ) is a class K∞ function whose derivative γ′(σ) = ∂γ/∂σ is also a class K∞
function. The function `γ(σ) denotes the Legendre-Fenchel transformation of `γ(σ) =
σ(γ′)−1(σ)− γ((γ′)−1(σ)) =

∫ σ
0 (γ′)−1(s)ds.

Remark 1. (Krstic and Deng (1998); Krstic and Li (1998); Luo et al. (2005)) It has
been shown that F = 0 will lead to the definition of robust control Lyapunov function
(RCLF), and G = 0 will lead to the definition of adaptive control Lyapunov function
(ACLF), respectively. Definition 2.1 is a consensus of both theories.

In addition to the definition of RACLF, the solvability of the adaptive control
problem is also revisited. It is provided that the estimation of θ is θ̂(t), and the

estimation error is θ̃ = θ̂ − θ.

Definition 2.2. (Krstic and Deng (1998); Luo et al. (2005)) The adaptive control

problem of the system in Eq.(11) is solvable, if there exists a function α(x, θ̂) smooth

on {Rnx\{0}}×Rnθ and satisfies α(0, θ̂) ≡ 0, a smooth function β(x, θ̂) : Rnx×Rnθ →
Rnθ×nθ , and a matrix Γ = ΓT > 0 such that

u = α(x, θ̂);
˙̂
θ = Γ−1β(x, θ̂) (14)

guarantees the global boundedness of the tuple (x, θ̂), and asymptotic convergence of
x, for all θ ∈ Rnθ .

If V0(x, θ) is proven to be a RACLF together with the stabilizing controller as
u = α(x, θ) for the auxiliary system in Eq.(13), the control law in Definition 2.2 will
asymptotically stabilize the system in Eq.(11) with respect to the newly constructed
Lyapunov function V1 = V0 + (1/2)θ̃TΓθ̃ (Krstic and Deng (1998)). Based on this
result, the theorem of inverse optimal robust adaptive control can be established.

6
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Theorem 2.1. (Luo et al. (2005)) Based on the condition in Definitions 2.1 and 2.2,
if there exists a function R(x, θ) that satisfies R = RT > 0 so that the control law

u = α0(x, θ) = −R(x, θ)−1(LgV )T (15)

globally asymptotically stabilizes Eq.(13) with respect to V (x, θ), then, the adaptive
control law

u = α(x, θ̂) = −c1R(x, θ̂)−1(LgV )T ;
˙̂
θ = Γ−1β(x, θ̂) = Γ−1(LFV )T (16)

with c1 ≥ 2, solves the inverse optimal H∞ adaptive control problem for the system
described in Eq.(11) by minimizing the cost function

Jα(u) = sup
w∈W

{
lim
t→∞

[
c1θ̃

TΓθ̃ + 2c1V (x, θ̂)

+

∫ t

0

(
l(x, θ̂) + uTR(x, θ̂)u− c1c2γ

(
‖w‖
c2

))
dt

]}
(17)

for any c2 ∈ (0, 2], where

l(x, θ̂) =− 2c1LfV − 2c1LFV

(
θ̂ + Γ

(
∂V

∂θ̂

)T)
− c1c2`γ(2‖LGV ‖) + c2

1LgV R
−1(LgV )T (18)

and W is the set of locally bounded functions of x.

Remark 2. (Luo et al. (2005)) Similar to Remark 1, by assuming the parameter θ is
known and setting Γ = 0, the inverse optimal robust control in Eq.(15 - 18) yields the
RCLF control law and its corresponding cost function. By setting w = 0, the ACLF
controller that minimizes its cost function can be acquired. As the two components of
the RACLF, the two control laws are not coupled and can be applied separately.

2.3. Problem Statement

The above theorems provide an effective way to design the controller to address model
uncertainties and disturbance. However, it cannot be applied directly to the previously
discussed MRS due to the unique nonholonomic, under-actuated, and constrained fea-
tures. Therefore, the core of this work is to extend the above theories to the nonholo-
nomically constrained modular robotic system, which has the following dynamics

ẋ =

 q̇
M−1(H + JTλ λ)

Jξ q̇ + Ωξ

+

 0
M−1JTu

0

u+

 0
M−1fθ

0

+

 0
M−1fw

0

 ; (19)

where fθ ∈ Rnq is the model uncertainty and fw ∈ Rnq is the disturbance. For this
study, the output of the system is assumed to be undisturbed, which remains as Eq.(7).
It should be noted that fθ and fw will indirectly affect ξ and q̇, since ξ and q̇ are inte-
grated from q̈. In this case, any uncertainties and disturbances affecting ξ and q̇ can
be included in fθ and fw. It should also be noted that the constraint uncertainties

7

Page 9 of 29

URL: http://mc.manuscriptcentral.com/tcon Email: TCON-peerreview@journals.tandf.co.uk

International Journal of Control

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

or disturbances are not considered, since any inaccuracy in the kinematic constraints
can always be represented alternatively in the state equations. Under these conditions,
the original controller may not be able to assure system convergence towards a de-
sired trajectory. The controller may not even be able to stabilize the system if the
uncertainties and disturbances are large.

3. Robust Adaptive Control Solutions

To solve the formulated problem, adaptive control is studied first with the assumption
fw = 0. The robustness is then added through specific CLF design.

3.1. Adaptive Control and Model Uncertainty Assumptions

To formulate the adpative control law with fw = 0, the error vector is defined as

e =

eIeP
eD

 =

∫ (y − rh)dt
y − rh
ẏ − ṙh

 (20)

where eI is the integral error. To limit the scope of the study, some reasonable as-
sumptions (Luo et al. (2005)) are made as follows

(S1) fθ has the structure of

fθ = Y (x)θ + L?(q, ξ, θ)q̈ (21)

where Y : R2nq+nξ → Rnq×nθ is the state uncertainty regressor function of class
C∞ and L? : Rnq × Rnξ × Rnθ → Rnq×nq is the acceleration uncertainty map of
class C∞ that satisfies L?(q, ε, 0) = 0.

(S2) There exists a class C∞ regressor function L(q, ξ, q̈) : R2nq+nξ × Rnq → Rnq×nθ ,
so that L?(q, ξ, θ)q̈ satisfies

L?(q, ξ, θ)q̈ = L(q, ξ, q̈)θ (22)

Here, (S1) is made based on the achievable setup that all of the states are measured
with sensors. The structure demonstrates the existence of uncertainties from the force
and inertia, which covers a wide variety of the uncertainty sources. For (S2), the
relationship in Eq.(22) indicates the jointly affine property of the term L?(q, ξ, θ)q̈ in
the tuple (θ, q̈).

Furthermore, for the input-output control problem where Jh 6= Inq , a conversion
between q̈ and the output ÿ is required (Gu and Xu (1995)). It is possible to select the
internal states of the control system as qi ∈ Rnq−ny based on an nth rank permutation
matrix S such that[

ÿ − J̇hq̇ − Ω̇h

q̈i

]
=

[
JhS

−1[
0 I(n−ny)×(n−ny)

]]Sq̈ = JsSq̈; (23)

Since the acceleration of the output tracking error is ėD = ÿ− r̈h = Jhq̈+J̇hq̇+Ω̇h− r̈h,
the term y can be represented with ėD and r̈h. Therefore, the term L(x, q̈)θ can be

8
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equivalently converted to

L(x, q̈)θ = Lo(x, ėD)θ + Li(x, r̈h, q̈i)θ (24)

where Lo and Li are defined as

Lo(x, ėD) =L
(
x, (JsS)−1

[
ėTD 0T(nq−ny)×1

]T )
; (25a)

Li(x, r̈h, q̈i) =L
(
x, (JsS)−1

[
(r̈h − J̇hq̇ − Ω̇h)T q̈Ti

]T ))
. (25b)

Base on the setup, provided that the estimation of θ is θ̂(t) ∈ Rnθ , by adopting the feed-

forward controller shown in Eq.(9b) and the feedback controller as ub = Λ†uψ(x, e, q̈i, θ̂),
the error dynamics becomes

ėD = JhM
−1Φλ(Y (x)θ + Lo(x, ėD)θ + Li(x, r̈h, q̈i)θ) + ψ (26)

Therefore, the final error dynamics is obtained as

ė =

0 Iny 0
0 0 Iny
0 0 0

 e+

 0
0

JhM
−1Φλ

(
Y (x) + Li

)
θ

+

 0
0

JhM
−1ΦλLoθ

+

0
0
ψ

 (27)

Here, based on (S2), more intermediate terms could be defined as

L?o(x, θ)ėD =Lo(x, ėD)θ (28a)

L1(x, ėD)θ =JhM
−1ΦλL

?
o(x, θ)ėD (28b)

L?1(x, θ)ėD =L1(x, ėD)θ (28c)

F (x, r̈h, q̈i) =JhM
−1Φλ

(
Y (x) + Li(x, r̈h, q̈i)

)
(28d)

where L?o(x, 0) = L?1(x, 0) = 0. Therefore, the system can be rearranged so that the
right hand side of the equation involves no more than a 2nd order derivative of the
error. I 0 0

0 I 0
0 0 I − L?1

 ė =

0 I 0
0 0 I
0 0 0

 e+

 0
0
Fθ

+

0
0
ψ

 ; (29)

As in Eq.(29), which demonstrates the error state system, the term L?1 will affect the
complexity of the control problem. Omitting L?1 will lead to the inability to estimate
some of the inertial uncertainties in the system. The solution lies in analyzing the
adaptive control Lyapunov function. Referring to Definition 2.1, 2.2, and Remark 1,
an ACLF (under zero disturbance) candidate based on Eq.(29) can be selected as

V1,0 =
1

2
eTPee; (30)

where Pe ∈ R3ny ×R3ny is a constant symmetric positive definite matrix and θ̃ = θ̂−θ
is the parameter estimation error. Similar to Eq.(12), it is easy to see that the ACLF

9
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condition requires satisfying the auxiliary control problem of

ė =

0 I 0
0 0 I
0 0 0

 e+

 0
0

Fθ + L?1ėD

+

 0
0
ψ1,0

 (31)

with the controller ψ1,0. By assuming ψ1,0 as

ψ1,0(x, e, θ) = −Fθ + (I − L?1)ψPID (32)

with ψPID is defined as

ψPID(e) = −(KIeI +KP eP +KDeD) (33)

where KI , KP , and KD are constant symmetric positive definite matrices, the auxiliary
system becomesI 0 0

0 I 0
0 0 I − L?1

 ė =

 0 I 0
0 0 I

−(I − L?1)KI −(I − L?1)KP −(I − L?1)KD

 e
which yields

L?1ėD = L?1ψPID (34)

Equation (34) is used to approximate the uncertain dynamics L?1ėD ≈ L?1ψPID. It
should be noted that L?1 can also be viewed as the adaptive gain-tuning parameter
matrix for the PID controller. Thus, it can be concluded that Eq.(30) is an ACLF
candidate if the following requirement is satisfied

ATPe + PeA < 0; A =

 0 I 0
0 0 I
−KI −KP −KD

 (35)

Proposition 3.1. For the error control system in Eq.(29), with L?1ėD ≈ L?1ψPID
through Eq.(34), and the PID gains (i.e., KI , KP , and KD) satisfying the condition
in Eq.(35), the controller

ψ1(x, e, q̈i, θ̂) = −(F (x, r̈h, q̈i) + L1(x, ψPID))θ̂ + ψPID (36)

and the adaptive update law

˙̂
θ1 = Γ−1(F (x, r̈h, q̈i) + L1(x, ψPID)

)T
(P Te,IDeI + P Te,PDeP + Pe,DeD) (37)

where Pe,ID, Pe,PD, Pe,D ∈ Rny × Rny are components of

Pe =

 Pe,I Pe,PI Pe,ID
P Te,PI Pe,P Pe,PD
P Te,ID P Te,PD Pe,D


10

Page 12 of 29

URL: http://mc.manuscriptcentral.com/tcon Email: TCON-peerreview@journals.tandf.co.uk

International Journal of Control

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

will lead to the asymptotic stabilization of the system with respect to the full Lyapunov
function

V1 =
1

2
eTPee+

1

2
θ̃TΓθ̃; (38)

Proof: Based on Eq.(28c), by substituting the controller from Eq.(36) into Eq.(29),

the error dynamics becomes (recall θ̃ = θ̂ − θ)

ė =

0 I 0
0 0 I
0 0 0

 e−
 0

0

F θ̃ − L?1(x, θ)ėD + L?1(x, θ̂)ψPID

+

 0
0

ψPID

 (39)

with L?1(x, θ̂)ėD ≈ L?1(x, θ̂)ψPID based on Eq.(34), the above equation is further sim-
plified as

ė = Ae−

 0
0(

F + L1(x, ėD)
)
θ̃

 (40)

Differentiating the Lyapunov function yields

V̇1 =
1

2
ėTPee+

1

2
eTPeė+

1

2
˙̃
θTΓθ̃ +

1

2
θ̃TΓ

˙̃
θ (41)

Substituting the error dynamics from Eq.(40) and the parameter update dynamics
from Eq.(37), Eq.(41) becomes

V̇1 =
1

2
eT (ATPe + PeA)e−

[
0 0 θ̃T (F + L1)T

]
Pee

+ θ̃T (F + L1)T (P Te,IDeI + P Te,PDeP + P Te,DeD)

=
1

2
eT (ATPe + PeA)e < 0 (42)

Remark 3. An understatement for the stability of the adaptive controller in Propo-
sition 3.1 is the boundedness of ėD. (Dawson, Lewis, Spong, and Ortega (1991); Spong
and Ortega (1990); H. Wang (2011)) From Eq.(28c) and Eq.(40), it is obtained that

(
I + L?1(x, θ̂)− L?1(x, θ)

)
ėD = −F θ̃ + ψPID (43)

This is an indication that the boundedness of ėD is provided by the invertibility

of
(
I + L?1(x, θ̂)− L?1(x, θ)

)
, which involves the estimated inertia uncertainty. From

Eq.(28), it can be recognized that L?1 has the same unit dimension as the ratio be-
tween inertia matrices; with Jh as a kinematic term, M−1φλL

?
o is comparable to the

ratio between the modeled inertia M and inertia uncertain L?o mapped on the con-
strained manifold by φλ. Therefore, similar to the case discussed in (Dawson et al.

(1991)), the existence of
(
I + L?1(x, θ̂)− L?1(x, θ)

)−1
may be ensured by reasonable
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adjusting M , the proposed controller has limitations in the applications where L?o is
significant compared to M .

Remark 4. Another important condition for the adaptive controller is the avail-
ability of acceleration-related terms L?1ėD and q̈i. Since accelerations are affected
by system inputs, the closed-form solution for these terms may not be avail-
able (Gu and Xu (1995)). In some cases where the knowledge of the system is
available, L?1ėD and q̈i may be estimated by forces and control inputs through
the expression of e and x (as in the case of this study). This strategy, how-
ever, has limitations in the presence of significant model uncertainties and distur-
bances. It is also possible to acquire L?1ėD and q̈i through acceleration measurement
(Dawson et al. (1991); Ortega and Spong (1988); Spong and Ortega (1990)) or filter-
ing (H. Wang (2011)). For the adaptive control stability, controllers designed using
acceleration measurements can only be applied to limited scenarios where high preci-
sion measurement is available.

3.2. Robust Adaptive CLF Design

A detailed process of robust adaptive controller design can now be explained. Similarly,
as there may be different sources where the disturbances originate, assumptions are
made to limit the scope of the study, which are listed below

(S3) fw has the structure of fw = c2W (x)w (Ghorbel, Srinivasan, and Spong (1998))
where c2 > 0 is the disturbance magnitude parameter; W : R2nq+nξ → Rnq×nw is
the disturbance mapper of class C∞; and w ∈ Rnw is the disturbance vector.

(S4) I − L?1 is invertible and locally bounded in x for fixed θ. (Ghorbel et al. (1998))

Assumption (S3) is made so that the disturbances are considered affine external inputs
into the system, where c2 ∈ R+ is the assumed sensitivity parameter. For (S4), re-
call from Remark 3 that L?1 is comparable to the ratio between modeled inertia M
and inertia uncertainty L?o. An unbounded inertia ratio usually indicates significant
modeling inaccuracy that is unlikely to be caused by model uncertainty, which makes
it reasonable to assume that for any θ the ratio between the known and unknown
inertia is bounded in x. The error control system that involves disturbance can then
be established based on the above assumptions and Eq.(29) asI 0 0

0 I 0
0 0 I − L?1

 ė =

0 I 0
0 0 I
0 0 0

 e+

 0
0

Fθ + JhM
−1Φλ(c2W (x)w) + ψ

 (44)

From Eq.(44), it can be recognized that (I−L?1) would affect the relative sensitivity
of system error towards the disturbance. The coupling of uncertainty and disturbance
will increase the complexity of the problem, especially as the positiveness of (I − L?1)
is unknown. By adopting the same auxiliary controller ψ1,0 as defined in Eq.(32) and
based on (S4), the equivalent ėD is now calculated as

ėD = ψPID + (I − L?1)−1JhM
−1ΦλWw (45)

As an essential process of the controller design, the selection of RACLF is explained.
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Similar to Eq.(30), the structure of the RACLF is selected as

V2,0(e) =
1

2
eTPee (46)

Here, Pe is a symmetric positive definite matrix redesigned as

Pe =

(k2
1 + k2

2 + k2
i )K

TK (kikp + k2k3)KTK kiK
TK

(kikp + k2k3)KTK (k2
3 + k2

p)K
TK kpK

TK

kiK
TK kpK

TK KTK

 (47)

where k = [ki, kp, k1, k2, k3] ∈ R5
+ are constant gain coefficients and K ∈ Rny×ny is

constant and positive definite. Note that this design does not cover all the available
Lyapunov equations. The design, however, offers a systematic way to design a variety
of desired RACLFs. As a result, Eq.(46) can also be represented as

V2,0 =
1

2
k2

1e
T
I K

TKeI +
1

2
(k2KeI + k3KeP )T (k2KeI + k3KeP )

+
1

2
(kiKeI + kpKeP +KeD)T (kiKeI + kpKeP +KeD) (48)

By defining ε = kieI + kpeP + eD, it can be obtained that

ε̇ = kp(ε− kieI − kpeP ) + kieP + (L?1ėD + Fθ + JhM
−1ΦλWw + ψ)

= kp(ε− kieI − kpeP ) + kieP

+ (L?1(ψPID + (I − L?1)−1JhM
−1ΦλWw) + Fθ + JhM

−1ΦλWw + ψ)

= kp(ε− kieI − kpeP ) + kieP

+ (L?1ψPID + Fθ + (I − L?1)−1JhM
−1ΦλWw + ψ) (49)

with the equality of (I + L?1(I − L?1)−1) = (I − L?1)−1 (Henderson and Searle (1981)).
Again, based on (S4), a new term G is introduced such that

G = cwJhM
−1ΦλW ; (50)

where cw ∈ R+ satisfies ‖cω‖ ≥ c2max(‖(I − L?1)−1‖) in the local domain of x for the
fixed θ, which provides

max(‖Gw‖) ≥ c2max(‖(I − L?1)−1JhM
−1ΦλWw‖) (51)

As such, Gw is used as a compromised alternative for (I −L?1)−1JhM
−1ΦλWw in the

following derivation.
Secondly, the relationship between the disturbance and the control state is assumed.

Referring to Definition 2.1 and Remark 1, the class K∞ function γε for L2 disturbance
attenuation (Luo et al. (2005)) can be selected as

γε(σ) = σ2; (52)

According to Definition 2.1, it can be calculated that LGV2,0 = εTKTKG. The assumed
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disturbance with respect to the control state can then be obtained as

wε = `γε(2‖(KTKG)T ε‖) (KTKG)T ε

‖(KTKG)T ε‖2
= (KTKG)T ε (53)

provided that the auxiliary controller ψ(x, e, θ) for the auxiliary system has the struc-
ture of

ψPID = −R−1
ε (KTK)T ε; ψ2,0(x, e, θ) = −F (x, r̈h, q̈i)θ + (I − L?1(x, θ))ψPID (54)

where Rε(x, e) : R2nq+nξ × R3ny → Rny×ny is symmetric positive definite. This leads
to the final form of the auxiliary system of

ε̇ = kp(ε− kieI − kpeP ) + kieP + (−R−1
ε (KTK)T +G(KTKG)T )ε (55)

Taking the time derivative of V2,0 yields

V̇2,0 = LfV2,0 + εTKTK(−R−1
ε KTK +GGTKTK)ε

= α1e
T
I K

TKeI + α2e
T
I K

TKeP + α3e
T
PK

TKeP

+ εTKTK(β1eI + β2eP ) + εTKTK(kpIny −R−1
ε KTK +GGTKTK)ε

where

LfV2,0 = k2
1e
T
I K

TKeP + (k2eI + k3eP )TKTK(k2eP + k3(ε− kieI − kpeP ))

+ kpε
TKTKε− εTKTK(kp(kieI + kpeP )− kieP )

and

α1 = −kik2k3; α2 = k2
1 + k2

2 − kik2
3 − kpk2k3;

α3 = k2k3 − kpk2
3; β1 = k2k3 − kikp; β2 = k2

3 + ki − k2
p

To guarantee the existence of a positive definite Rε that satisfies V̇2,0 < 0, additional
sufficient design conditions are offered such that

2a2
3β1β2 + α2 = 0; (1 + a1)a2

3β
2
1 + α1 = 0; (1 + a2)a2

3β
2
2 + α3 = 0

Hence, the existence of a = [a1, a2, a3] ∈ R3
+ determines the feasibility of the selected

gain coefficients k. The compatible k can also be designed by assuming an optimization
problem with constraints on k and a coefficients.

Assuming a suitable pair of k and c are found, the Lyapunov function can be further
simplified as

V̇2,0 =− a1a
2
3β

2
1e
T
I K

TKeI − a2a
2
3β

2
2e
T
PK

TKeP

− a2
3(β1eI + β2eP )TKTK(β1eI + β2eP ) + εTKTK(β1eI + β2eP )

+ εTKTK(kpIny −R−1
ε KTK +GGTKTK)ε (56)
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which also provides the alternative presentation of LfV2,0 as

LfV2,0 =− a1a
2
3β

2
1e
T
I K

TKeI − a2a
2
3β

2
2e
T
PK

TKeP + kpε
TKTKε

− a2
3(β1eI + β2eP )TKTK(β1eI + β2eP ) + εTKTK(β1eI + β2eP )

Therefore, by selecting Rε such that

R−1
ε =

[
GGT +

(
kp + 1/(a2

3)
)
(KTK)−1 + CR

]
(57)

where CR ∈ Rny×ny is the additional symmetric positive definite magnitude matrix,
the RACLF derivative yields

V̇2,0 =− a1a
2
3β

2
1e
T
I K

TKeI − a2a
2
3β

2
2e
T
PK

TKeP − εTKTKCRK
TKε

− ((1/a3)ε− a3(β1eI + β2eP ))TKTK((1/a3)ε− a3(β1eI + β2eP )) < −Q (58)

with Q(e, θ̂) : R2ny × Rnθ → R+.

3.3. Main Result

Based on these preparations, the theorem of the H∞ robust adaptive controller is
proposed, which is a conclusive result of the study. Under the appropriate conditions,
the main result is applicable to under-actuated, constrained, and nonholonomic robotic
systems. The result is also consistent with the motivation as it is suitable for MRS.

Theorem 4.1. Based on the assumed conditions (S1)-(S4), with the approximation
L?1ėD ≈ L?1ψPID through Eq.(34) the disturbance conversion in Eq.(51), ψPID defined
in Eq.(54), Rε defined in Eq.(57), uf (x, r̈h) defined in Eq.(9b), and ψ2 defined as

ψ2(x, e, q̈i, θ̂) = (I − L?1(x, θ̂))ψPID − F (x, r̈h, q̈i)θ̂ (59)

the RD2 input-output robust adaptive controller

u(x, e, q̈i, θ̂) = uf (x, r̈h) + Λ†uψ2(x, e, q̈i, θ̂) (60)

along with the update law

˙̂
θ2 = Γ−1

[
F (x, r̈h, q̈i) + L1(x, ψPID)

]T
KTKε (61)

can solve the trajectory tracking problem for the disturbed dynamic system in Eq.(19)
by asymptotically stabilizing the Lyapunov function

V2(e, θ̂) =
1

2
(eTPee+ θ̃TΓθ̃) (62)
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and minimizing the cost function

Jε(ψε) = sup
w∈Wε

{
lim
t→∞

[
c1‖θ̃TΓθ̃‖+ 2c1V2,0(x, e, θ̂)

+

∫ t

0

(
lε(x, e, θ̂)− c1‖w‖2 + ψTε Rε(x)ψε

)
dτ

]}
(63)

where

LfV2 =LfV2,0

lε =− 2c1LfV2 − c1`γε
(
2‖(KTKG)T ε‖

)
+ c2

1ε
TKTKR−1

ε KTKε (64)

ψε =
(
I − L?1(q, ξ, θ̂)

)−1
(ψ2 + F θ̂) = c1ψPID (65)

if it satisfies the conditions that K > 0, CR = CTR > 0, k > 0, a > 0, c1 > 2, cw > 0,
and Wε is the set of locally bounded functions of ε according to Eq.(52).

The proof of this theorem can be found in Appendix A. Detailed explanation of
Theorem 4.1 is provided below.

Remark 5. Theorem 4.1 proved that Eq.(60) is an optimal controller for the control
problem in terms of ψε. It should be noted that the controller, u, is not fully penalized
by the cost function. However, since uf , F , and L?1 have a fixed form and are agnostic
of the output or error vectors when the dynamic and estimated uncertainty model is
determined, ψε is the only feedback component of the full controller that is optimizable
by the cost function.

Remark 6. The controller can only ensure the robustness towards the compro-
mised disturbance of Gw. In practice, the robust control performance towards
c2(I − L?1)−1JhM

−1ΦλWw cannot be quantitatively analyzed since (I − L?1)−1 is
unknown. As L?1 is comparable to the ratio between modeled and uncertain inertia
in terms of the outputs (see previous explanation in Remark 3), the ideal appli-
cation condition of the controller would be a model with small inertia uncertainty
(L?1 ∼ 0) that results in (I − L?1)−1 ∼ I, which decreases the difference between Gw
and c2(I − L?1)−1JhM

−1ΦλWw.

Remark 7. For the introduced RACLF design process, the selection of the coefficient
set k and a is affected by the dynamics of the robotic system indirectly. The cost
function for the selection of an ideal k and the corresponding a is decided by the
desired control performance according to the resulting Lyapunov function. However,
k and a are independent of any detailed properties of the system and are only used to
tune the ratio between the P, I, and D gains, which are uniformly shaped by KTK.

4. Simulation

This section validates the proposed control technique through a trajectory tracking
control of a 3-DOF manipulator mounted on a quadcopter platform, as shown in Fig.
1, which involves under-actuation and nonholonomic constraints at the same time.
The simulation is conducted based on a MATLAB toolbox developed by the authors
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following Kane’s method (Kane and Levinson (1985); J. Wang, Kamidi, and Ben-Tzvi
(2018)).

4.1. System Setup

The aerial manipulator model setup is shown in Fig. 2a, where the center of mass
(COM) of the UAV is located at its geometric center. With the UAV and manipulator
denoted as system 1 and system 2, respectively, the whole system can be modeled as[

M1 0
0 M2

] [
q̈1

q̈2

]
=

[
H1

H2

]
+

[
JTuf 0

0 JTuτ

] [
uf
uτ

]
+

[
fθ1
fθ2

]
+

[
fw1

fw2

]
+ JTλ λ (66a)[

ξ̇1

ξ̇2

]
=

[
Jξ1 0
0 Jξ2

] [
q̇1

q̇2

]
(66b)

with the generalized velocities being q̇1 =
[
ρ̇T1 ωT1

]T
and q̇2 =

[
ρ̇T2 ωT2 δ̇T2

]T
.

ρ ∈ R3 represents the base translation; ω ∈ R3 is the base angular velocity; δ2 ∈ R3

is the manipulator joint angles; the nonholonomic states ξ1 ∈ R4 and ξ2 ∈ R4 are the
quaternion coordinates of the UAV base and the manipulator base, respectively. As
mentioned in Eq.(2) from Section 2.1, these nonholonomic states are calculated as

ξ̇1 = 0.5 (ξ1 ×
[
0 ωT1

]T
); ξ̇2 = 0.5 (ξ2 ×

[
0 ωT2

]T
) (67)

Jξ1 ∈ R4×3 and Jξ2 ∈ R4×3 are the Jacobian matrices calculated from Eq.(67);
uf = [uf1 , uf2 , uf3 , uf4 ] ∈ R4 are the quadcopter rotor input (thrust forces, which
is proportional to the thrusts by coefficient κ); and uτ = [uτ1 , uτ2 , uτ3 ] ∈ R3 are the
manipulator joint torques. In particular, Juf is defined as

Juf =
[
JTuf,T JTuf,R

]T
; Juf,T =

[
04×2 14×1

]
TR(ξ1)T (68)

where Juf,T ∈ R4×3 and Juf,R ∈ R4×3 are the input Jacobian submatrices correspond-
ing to the force and torque generated by uf ; and TR : R4 → R3×3 is the rotation
matrix calculated from ξ1 (Fresk and Nikolakopoulos (2013)).

For the fixture between the UAV base and the manipulator (Fresk and Nikolakopou-

(a) Model information of aerial manip-

ulator

-33

0

-22

1

Z
 (

m
)

1 -1

X (m) Y (m)

2

00

1-1

2-2

3-3

Traj.
Ref.

(b) 3D view of trajectory and reference

Figure 2. Simulation setups for the aerial manipulator case study
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Table 2. Model and Control Parameter Selections.

Prop. Val. Prop. Val.

mUAV 5kg marm 1.7kg
θ [2 kg,−0.0625 kg, 0.3125 kg, 7.815e-4 kg-m2] aA,1 [2, 0.5, 1]
ωc [0.5, 1, 1.5] k [0.1, 0.75, 0.05, 0.05, 0.25]
cw 0.1 c1 2
CR1

1.5I6 CR2
1.5I7

K1 diag([2, 2, 2, 2, 2, 2])0.5 K2 diag([2, 2, 2, 2, 3, 3, 3])0.5

Γ 0.5diag([101, 102, 102, 105]) l [0.15 m, 0.07 m, 0.075 m, 0.1 m]
κ 0.05 x(0) [01×30, 1, 01×3, 1, 01×3]T

los (2013)), the constraint equation is obtained as

rλρ = 0 = ρ1 − ρ2; (69a)

rλξ = 0 =
[
03×1 I3

]
(ξ1 × ξ̄2) (69b)

where rλ = [rTλρ , r
T
λξ

]T ∈ R6. Here, rλρ ∈ R3 is the translational displacement con-

straint, and rλξ ∈ R3 is the quaternion-based rotation constraint. These two constraints
fix the base of the manipulator with the UAV in terms of translational displacements
and rotations, respectively. The constraint Jacobian matrix Jλ ∈ R6×15 is calculated
from rλ. The Lagrange multiplier λ ∈ R6 calculated through Eq.(5) is then applied
as the constraint force to ensure the coupling between the UAV and the manipulator
systems that satisfies Eq.(69b). Therefore, the dynamical effects from the forces and
torques experienced by one of the systems will pass to the other one through λ.

The uncertainties in this model were assumed to be the unknown point-mass θM
attached on the COM of the UAV and an unknown point-mass θm of the payload with
an unknown displacement θd along the final link of the arm. The uncertain payload
effect could be also represented as an unknown point-mass θm1 at the beginning of the
final link, an unknown point-mass θm2 at the tip of the final link, and an unknown
moment θi along the radial direction of l4. Therefore, the set of unknown properties
was selected as θ = [θM , θm1

, θm2
, θi]

T ∈ R4. In addition, the new parameters are
uncoupled and affine in the system. The default uncertainty parameters were selected
to have θm = 0.2 kg and θd = 0.025 m equivalently.

The system disturbances w = [wT1,f , w
T
1,τ , w

T
2,τ ]T consist of the forces w1,f ∈ R3 and

torques w1,τ ∈ R3 acting on the UAV COM, and the disturbed torques w2,τ ∈ R3

acting on the manipulator joints. Thus, the disturbances are also affine to the system.
Harmonic functions with different frequencies and amplitudes were used to design the
disturbances

w1,f (t) = (sin(5t) + sin(7.5t) + sin(10t))(13×1)

w1,τ (t) = 0.5(sin(5t) + sin(7.5t) + sin(10t))(13×1)

w2,τ (t) = 0.05(sin(5t) + sin(7.5t) + sin(10t))(13×1)

and the disturbance Jacobian matrix W was selected as

W1 =

[
I3 03×3

03×3 0.5I3

]
; W2 =

[
W1 06×3

03×6 0.05I3

]
; W =

[
W1 06×9

09×6 W2

]T
The reasoning for this selection was based on the analysis of JhM

−1ΦλW , which
showed that δ2 was most sensitive to the disturbances. Therefore, the selection of
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Figure 3. The multi-loop control framework of the aerial manipulator.

W should also ensure that the resulting control gain is not too large for the control
frequency. All the standard parameters and properties are summarized in Table 2. To
acquire accurate results, the simulation time step was set to 0.5× 10−3 seconds. The
control input and parameter update rates were set to 200 Hz. 40 N saturation is set
for uf . The selected k satisfied the CLF design condition.

The whole system control was realized with multi-loop control (Caccavale, Giglio,
Muscio, and Pierri (2014)) that the position control loop calculates the desired attitude
for tracking by estimating the thrust required for the system to follow a translational
trajectory. It should be noted that the control scheme was established based on the
assumption that the system response in attitude control is almost instantaneous when
the moment of inertia of the system base is negligible compared to the control input
capacity. The control output and control input for the two loops were selected as

y1 =
[
ρT1 δT2

]T
; y2 =

[( [
0 0 1

]
ρ
)

δT2 ξTerr
]T

u1 =
[
uTvf uTτ

]T
; u2 =

[
uTf uTτ

]T
;

where ξerr ∈ R3 is the quaternion error calculated between the reference and state
quaternion and uvf ∈ R3 is the virtual force acting at the COM of the UAV. The
control framework will be applied to both loops, whereas K1 ∈ R6×6 and CR1

∈ R6×6

were for the position loop control, while K2 ∈ R7×7 and CR2
∈ R7×7 were for attitude

loop control, respectively.
The 3D overview of the position trajectory is shown in Fig.2b. The reference tra-

jectory vectors are defined as

rh1
=
[
rTh,ρ rTh,δ

]T
; rh2

=
[
rh,z rTh,ξ rTh,δ

]T
rh,ξ =

[
rh,x rh,y rh,z

]T
; rh,ξ =

[
rh,roll rh,pitch rh,yaw

]T
; rh,δ =

[
rh,δ1 rh,δ2 rh,δ3

]T
for y1 and y2 in the two control loops respectively. The trajectories were designed as
smooth periodic functions:

rh,x = aA,1(cos(ωc1t)− 0.5 sin(ωc2t))

rh,y = aA,1(sin(ωc1t)− 0.5 sin(ωc2t))

rh,z = aA,2 sin(ωc2t); rh,yaw = ωc1t; rh,δ1 = ωc3t

rh,δ2 = aA,1 sin(ωc2t); rh,δ3 = aA,1 sin(ωc2t)

Here, aA = [aA,1, aA,2, aA,3] ∈ R3
+ are the amplitude coefficients and ωc =
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Figure 4. Comparison of position errors between zero-disturbance (upper row) and disturbed conditions

(lower row)

[ωc1 , ωc2 , ωc3 ] ∈ R3
+ are the periodic rate coefficients. The attitude references rh,roll

and rh,pitch are planned based on ryaw and uv,f calculated from the outer control
loop. The attitude references in Euler angles are then converted into the quaternion
references for the inner control loop.

Based on the above information, the control flow chart is demonstrated in Fig. 3. In
the framework, uf,1 and uf,2 are the feed-forward controllers calculated for the outer
and inner loops, respectively. Based on the simulation setup, the accelerations of inter-
nal states q̈i = [ρ̈x, ρ̈y]

T are required. While the system is under-actuated, ρ̈x, ρ̈y, and
ρ̈z are interdependent provided that thrusts and the gravitational forces are the only
external forces acting on the aerial manipulator. From Eq.(66) and Eq.(68), by assum-
ing the ideal condition that w ∼ 0, the ratio between the translational accelerations
can be calculated based on

(mUAV +marm + θM + θm1
+ θm2

)
[
ρ̈x ρ̈y ρ̈z + cG

]T
= JTuf,Tuf (70)

where cG is the gravitational acceleration (9.81 m/s2). For estimation, similar to
Eq.(45), we can estimate ρ̈z = r̈h,z + ėD,z, where ėD,z is the first element of the
feedback acceleration R−1

ε KTKε in Eq.(59) calculated from the outer control loop.
Hence, based on the knowledge of the forces in the system (recall Remark 4), q̈i can
be estimated based on the relationship in Eq.(70).

4.2. Results and Discussion

With the standard controller first implemented in the simulation, Fig. 4 shows the
comparison between position errors under zero-disturbance condition in the upper row,
and under disturbance in the lower row. It should be noted that both sets of error
did not converge to zero, as the steady state tracking errors oscillated periodically in
both simulations. This may be as a result of a delayed response due to input rate
limitation or the moment of inertia of the system floating base, which was assumed to
be negligible during the controller design. The non-smooth attitude reference acquired
from the outer control loop with numerical differentiation may also be a reason for the
oscillations in the output errors.

The disturbance had a significant effect on the control performance as the amplitude
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of the error oscillations were significantly larger. The result also showed that the joint
angles δ2 were greatly affected by the disturbances, which is likely due to the low
inertia of the links near the end of the manipulator. However, under both conditions
the controller managed to contain the system in the vicinity of the error equilibrium
(e = 0). The control input for the disturbed system is shown in Fig. 5, where it is
apparent that the rotor input never exceeded 40 N. The joint motor input oscillates
with magnitudes less than 2 N-m.

In these two simulations, the robustness augmentation part of the controller was
already playing an effective role. To demonstrate the effect, the norm of the steady
state errors from simulations with different control parameters were compared and
analyzed. In the subplots on the upper row of Fig. 6, cw was tuned to adjust the
strength of the robustness augmentation of the controller. As the disturbances had
the most significant effect on the joints, the robust control contributes the most to
the disturbance attenuation in the manipulator joint angle errors. The result shows
that doubling cw greatly alleviates these errors, while it also slightly affected the
performance in position and quaternion tracking. On the other hand, by decreasing
cw to 0, the controller was equivalent to an adaptive PID controller. In this case, the
norm of the joint angle error had peaked over 0.5 rad, which was significantly higher
than the errors in the simulations with robust control.

The subplots on the lower row of Fig. 6 compare the performance of controllers with
a different performance parameter CR. When CR was increased, the error oscillation
amplitudes recognizably decreased in position and quaternion tracking. Improving the
control gain usually yields better performance and robustness, while a high control
gain also requires higher input capacity in power and rate. It is also noticed that the
performance improvement in reducing the joint angle errors was not as insignificant
when compared with increasing cw. The definition of G in Eq.(50) implies the suscep-
tibility of outputs with respect to the noise, which is determined by the disturbance
magnitude indicated by W versus the inertia M . Therefore, increasing cw is different
from increasing CR in the way that it can specifically target the most disturbance-
sensitive outputs, which in this case are the manipulator joints. This also implies that
a good estimation of W in practical applications is crucial toward the robustness of
the controller design.

As shown in Fig. 7, the uncertainty parameters in the two simulations did not
converge to the true value. Apart from eliminating numerical errors, perfect conver-
gence of the parameters for this system requires reliable estimation of accelerations q̈,
carefully selected adaptive gain Γ, and appropriate control input rates. In these simu-
lations, the closed form presentation of q̈ cannot be acquired due to under-actuation.
As mentioned previously in Section 4.1, the 2nd order derivative of the internal states
q̈i was approximated from ėD,z and r̈h,z. The approximation used rh,ξ to determine
the ratio between the three translational accelerations, only considered the effect of

0 10 20 30 40 50 60

0

10

20

30

40

u
1(1)

u
1(2)

u
1(3)

u
1(4)

0 10 20 30 40 50 60
-3

-2

-1

0

1

2

u
2(1)

u
2(2)

u
2(3)

Figure 5. Control input of the system under disturbed simulation

21

Page 23 of 29

URL: http://mc.manuscriptcentral.com/tcon Email: TCON-peerreview@journals.tandf.co.uk

International Journal of Control

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
Figure 6. Performance comparison of controllers with different parameters (upper row: different cw; lower
row: different CR) under disturbance

the lifting thrust and gravitational force. Therefore, the delay in attitude tracking and
the approximation error due to other model effects (e.g., air viscosity damping in the
simulation) have caused the uncertainty parameter to oscillate in the vicinity of the
true value. The subplots on the lower row show that the disturbance can worsen the
convergence of the parameters. Increasing Γ will reduce the sensitivity of the uncer-
tainty parameter dynamics towards the disturbances, while it also increases the time
for it to reach steady state.

However, for fully-actuated or over-actuated systems, q̈ can be fully acquired based
on estimating the ėd from Eq.(31), which can result in better uncertainty parameter
convergence. To demonstrate this feature, the setup for the original system was mod-
ified so that u = [uTvf , u

T
vτ , u

T
τ ]T where the virtual torque uvτ ∈ R3 shares the same

input Jacobian as w1,τ , which leads to a fully-actuated system. This system was also
assumed to be unperturbed with w = 0 and having a control input rate of 2000 Hz. In
Fig. 8, the errors between the true value and estimated uncertainty parameters of the
fully actuated system at steady state are presented, where the time window has been
zoomed to t ∈ [300, 600] in seconds. It is clearly shown that the uncertainty parameters
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Figure 7. Comparison of uncertainty parameter error
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Figure 8. Adaptive parameter error of the fully actuated system simulation

in a fully actuated system had a much better convergence, under the condition that
the adopted model uncertainty structure fθ in controller design match with the real
application case.

Finally, it should be emphasized that the whole-body controller for this system was
fully based on the individual dynamic properties from each module, as M , H, Ju, L?1,
F , and W can all be separately prepared. This shows that the basic goal of establishing
a controller framework for a modular robotic system is obtained. The simulation has
verified the feasibility of the technique, and refining the performance will be a topic
of interest for future work.

5. Conclusion and Future Work

This paper proposed a framework of robust adaptive input-output controller design
for constrained and nonholonomic robotic systems. The adaptive model regression
and gain tuning was realized by parameter affine model-based functions, and the H∞
robustness augmentation was obtained based on inverse optimality. With reasonable
application assumptions, the simulation results have corroborated the main theorem
presented in the paper, which proves the feasibility of the framework by showing the
error convergence, uncertainty parameters and the attenuation of disturbance effects.
As a major objective, the control framework has realized a whole-body control of a
robotic system completely established on the individual properties of the modules.

The control framework presented in this paper has a number of limitations that
require attentions in future works. The proposed method can be further improved
by (1) investigating approaches to avoid the use of estimations or measurements of
acceleration-related terms; (2) exploring more flexible CLF design techniques to sup-
port a wider variety of control requirements; (3) extending the control framework to
applications in switching and hybrid systems. The control framework should also be
further studied on real applications, in which factors involving noise from sensors and
discrete dynamic behaviors may occur. By the conclusion of the study, the developed
theory can sufficiently provide a preliminary robust adaptive control template for a
wide family of robots.
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Appendix A. Proof of Theorem 4.1

With the equality of

`γε
(
2‖(KTKG)T ε‖

)
= εT (KTKG)(KTKG)T ε

the derivative of Eq.(62) can be presented in the form

V̇2(e, θ̂) =LfV2 + εTKTK(F + L1(x, ėD))θ + εTKTKψ2,0(x, e, q̈i, θ̂)

+ `γε
(
2‖(KTKG)T ε‖

)
− θ̃TΓ

˙̂
θ

with the previous setups of the feedback control law in Eq.(54). According to Prop.
3.1, with the approximation L?1ėD ≈ L?1ψPID through Eq.(34), and provided that the
parameter update law for ψ2,0 is

˙̂
θ2,0 = Γ−1

(
F + L1(x, ψPID)

)T
KTKε (A1)
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Jε(ψε) = sup
w∈Wε

{
lim
t→∞

[
c1θ̃

TΓθ̃ + 2c1

∫ t

0

(
εTKTK(F + L1(x, ψε))θ̃

)
dτ + 2c1V2,0(e)

− 2c1

∫ t

0

(
LfV2,0 + εTKTK

(
(F + L1(x, ψε))(θ − θ̂) + ψε +Gw

))
dτ

+

∫ t

0

(
c2

1ε
TKTKR−1

ε KTKε+ 2c1ε
TKTKψε + ψTε Rεψε

)
dτ

−
∫ t

0

(
c1‖w‖2 − 2c1ε

TKTKGw + c1`γε
(
2‖(KTKG)T ε‖

))
dτ

]}
= sup
w∈Wε

{
lim
t→∞

[
c1θ̃

TΓθ̃ − 2c1

∫ t

0

(
˙̃
θTΓθ̃

)
dτ + 2c1V2,0(e)

− 2c1

∫ t

0

(
LfV2,0 + εTKTK

(
(F + L1(x, ψε))θ + ψ2 +Gw

))
dτ

− c1

∫ t

0

(
‖w − (KTKG)T ε‖2

)
dτ

+

∫ t

0

((
ψε + c1R

−1
ε KTKε

)T
Rε
(
ψε + c1R

−1
ε KTKε

))
dτ

]}
(A3)

the V̇2(x, e, θ̂) term can be further simplified as

V̇2(e, θ̂) = LfV2 +
(
εTKTK(F + L1(x, ψPID))θ̃ − θ̃TΓ

˙̂
θ
)

− εTKTKR−1
ε KTKε+ `γε

(
2‖(KTKG)T ε‖

)
= − 1

2c1

(
lε − (c2

1 − 2c1)εTKTKR−1
ε KTKε

− c1`γε
(
2‖(KTKG)T ε‖

))
= V̇2,0(e) ≤ −Q(e, θ̂)

where Q(e, θ̂) : R2ny × Rnθ → R+. This leads to

lε ≥ 2c1Q+ c1`γε
(
2‖(KTKG)T ε‖

)
+ c1(c1 − 2)εTKTKR−1

ε KTKε (A2)

As c1 > 2, it can be proved that lε > 0. Thus, Jε is a meaningful cost function
that penalizes x, ψε, and w. Therefore, rearranging Eq.(63) yields the derivation of
Eq.(A3), which is acquired based on the error equivalence in Eq.(45), the disturbance
alternative in Eq.(50), the feedback controller in Eq.(59), the adaptive update law in
Eq.(61), and the definition of ψε in Eq.(65). The final form of Jε is written as

Jε = c1θ̃
T (0)Γθ̃(0) + 2c1V2,0

(
x(0), e(0), θ̂(0)

)
+

∫ ∞
0

((
ψε + c1R

−1
ε KTKε

)T
Rε
(
ψε + c1R

−1
ε KTKε

))
dτ

+ c1 sup
w∈Wε

{
−
∫ ∞

0

(
‖w − (KTKG)T ε‖2

)
dτ

}
(A4)
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It can be proved that

Υε = sup
w∈Wε

{
−
∫ ∞

0

(
‖w − (KTKG)T ε‖2

)
dτ

}
≤ 0 (A5)

and Υε = 0 is achieved if and only if the worst-case disturbance w? = (KTKG)T ε
occurs. Therefore, the solution for a minimal Jε is ψε = −c1R

−1
ε KTKε, which proves

Theorem 4.1.
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