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ABSTRACT  

The dual-axis piezoelectric tilt measurement device presented in this paper is modeled using a proposed methodology 
that generates a self-calibrating representation of the sensor’s output around two axes. Typically, when a piezo-based 
sensor is developed, its output is modeled as a direct function of its geometric, electro-mechanical and piezoelectric 
properties. This means that an accurate representation of the sensor’s output requires an accurate knowledge of its 
characteristics. In piezoelectric MEMS applications however, such information is either not available, or is provided in 
the form of approximate values which are susceptible to external stimuli. The method proposed in this paper models the 
direct piezoelectric effect as a function of genetic data provided a priori about the operation of a piezo-system. The 
resulting model is shown to be independent of any system-specific characteristics or any external stimuli. The impact 
that these parameters exhibit on the output of the sensor is carried implicitly by the genetic data which is generated 
through calibration. The validity of the proposed model is demonstrated through simulations performed on a new 
piezoelectric device for dual-axis tilt measurement. These results show a considerable accuracy under variations in the 
operating conditions, such as temperature. 
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1. INTRODUCTION  
The direct piezoelectric effect is a phenomenon exhibited by crystalline materials, such as quartz and ceramics, where 
the application of a mechanical stress forces a re-alignment of the electric dipoles which generates an electrical charge 
across the faces of the crystal. This phenomenon can be exploited in many engineering applications, most notably in 
sensor applications where the stress-inducing capability of a stimulus, such as pressure1 or acceleration2, is converted 
into a proportional measurable metric, namely an electrical voltage. 

From a mathematical perspective, modeling the direct effect of piezoelectricity is typically accomplished with 
constitutive equations which correlate the stress tensor T to the electrostatic field E through the piezoelectric coefficient 
matrix d and the permittivity matrixε . This means that an accurate representation of the behavior of a piezo-mechanical 
system requires a complete knowledge of its electro-mechanical and piezoelectric properties. The drawback of this 
approach however is that the coefficients of matrix d and ε are approximate statistical values that are further affected by 
external stimuli, such as temperature3 – 6, or by the operating conditions of the piezo-system, such as fatigue7, crystal 
aging8,9 and magnetically-induced depolarization10. This makes the resulting model vulnerable to unpredictable, unstable 
or time-varying parameters.  

The compensation for this vulnerability is often done mathematically, by modeling the influence of each stimulus 
separately and adding its contribution to the initial constitutive equations making them heavily non-linear11,12. In this 
paper, we propose a new modeling approach for the direct piezoelectric effect which results in a self-calibrating model13. 
By self-calibration, we mean that the mathematical model does not depend explicitly on the geometric, structural and 
piezoelectric properties of the system. Instead, this information is carried implicitly by genetic data generated via 
calibration, and provided a priori about the operation of the system. 

Although such modeling approach cannot be currently proven to being generalizable, its significance on system-to-
system basis is highly desirable, especially for applications where the operating conditions of the piezo-system vary over 
time. As such, in this paper, a new piezoelectric tilt-sensor will be first presented, and its voltage output for dual-axis 
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sensing applications will be modeled using the proposed self-calibrating approach. The ensuing mathematical derivation 
will be further validated via simulation results under varying thermal conditions. 
 

2. DUAL-AXIS PIEZOELECTRIC TILT SENSOR 
The proposed piezoelectric tilt sensor consists of a silicon substrate with a fixed-fixed 900 µm platinum beam suspended 
on the substrate, and carrying a proof mass in the center as illustrated schematically in Fig. 1. (Beam width: 20 µm). 
Under gravitational loading, the deflection of the beam – caused by the weight of the proof mass – generates a stress 
profile that peaks at the top surface of the beam near the anchors. This profile changes as a function of the roll and pitch 
angles of the sensor, since the components of the gravitational force causing the deflection represent a direct 
trigonometric function of these two angles. 
 

 
 

Figure 1. (a) Isometric schematic of the proposed piezoelectric tilt sensor, (b) Roll posture (β), (c) Pitch posture (θ) 
 
This means that a piezoelectric layer of Lead Zirconate Titanate (PZT) deposited on the top surface of the beam where 
the peak stress occurs, converts the mechanical stress into a measurable voltage following the direct piezoelectric effect. 
Similar to the stress profile, such voltage is a function of the roll and pitch angles of the sensor as illustrated in the two 
simulation results provided in Fig. 2. In these simulations, it is shown that the voltage output of the PZT layer varies 
proportionally with the single-axis pitch and roll inclination of the sensor, where the two profiles start from the same 
value corresponding to the horizontal posture of the sensor, and descend smoothly towards zero at 90° following two 
distinct slope profiles.    
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Figure 2. PZT voltage output profile for a single-axis roll (β) and pitch (θ) inclination  
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3. SELF-CALIBRATING MODEL DERIVATION 
Modeling the dual-axis behavior of the tilt sensor in Fig. 1 where none of the angles is set at zero requires a thorough 
derivation of the constitutive equations. In the proposed self-calibrating approach, we show that the dual-axis sensor 
output can be modeled as a function of the single-axis behavior (Fig. 2) which represents the genetic data for this sensor. 

The initial process in this derivation consists of curve-fitting the genetic data with a polynomial of order n that best 
approximates the data. These polynomials can be written as 

,0
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n p

p
p

V aβ β −
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where ,0Vβ (μV) represents the PZT voltage output for any angle β (Deg) at 0θ = ° , 0,V θ (μV) the PZT voltage output 
for any angleθ (Deg) at 0β = ° , and a and b the polynomial coefficients. Furthermore, the decomposition of the 
gravitational force F Mg= generated by the proof mass M into its three-dimensional components in the reference 
Cartesian frame xyz, where z defines the gravitational direction 
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where, in (3) to (8), , ,x y zA A A define the area of the beam’s cross-section orthogonal to the x, y and z axes, respectively, 

, ,x y zI I I the area moment of inertia of the beam’s cross-section around the x, y and z axes, respectively, , ,x y zQ Q Q the 

first moment of area of the beam’s cross-section around the x, y and z axes, respectively, , ,x y zt t t the thickness of the 
cross-section perpendicular to the corresponding shear and measured with respect to the beam’s neutral fiber, and 

, ,p p px y z the coordinates of the points of interest on the beam where the calculation of the stress tensor is being 

performed. Furthermore, ija are constant coefficients appended to the stress element iT to account for the sign contribution 
of each element, and to aggregate all numerical constants pertinent to each expression. 
 
The expansion of the stress tensor elements shows that T is a direct function of β and θ . This means that the 
polarization vector D and the electrostatic field E  are also functions of β  and θ  based on the constitutive equations 
 

1( , ) ( , ) , ( , ) ( , )D d T E Dβ β β ε β−Θ = Θ Θ = Θ       (9) 
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In (9), the expansion of the vector components of ( , )E β θ generates trigonometric expressions for 1 2 3, ,E E E in terms of 
β  and θ  as follows 

1 1 sin( )E k β= ,    2 2 cos( ) cos( )E k β θ=
 3 3 4 5 6 7cos( )sin( ) cos( ) cos( ) sin( ) cos( )cos( ) sin( )E k k k k kβ θ β θ β β θ β= + + + +   (10) 

 

where in (10), all coefficients and terms that are not an explicit function of β  and θ  are lumped into coefficients ik . 
With this nomenclature, the voltage ,Vβ θ across the faces of the beam can be written as a line integral of the electrostatic 
field ( , )E β θ  as 
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where n̂ denotes a unit vector in the ΔL direction, and LΔ the magnitude of vector ˆ ˆ ˆ( ) ( ) ( )l w w x t t y b b zΔ δ δ δ= + + + + +  

with , ,w t b denoting the width, thickness and base length of the PZT layer, respectively, and , ,w t bδ δ δ  their respective 
variations under tensile/compressive loading. Furthermore, if one writes ˆ|| ||E E e= , where e) is an arbitrary unit vector in 
the direction of vector E , then (11) can be re-written as , ˆ ˆ|| || || || cos( , ) || ||V E L e n Eβ θ λ= Δ =  where ˆ ˆ|| || cos( , )L e nλ = Δ  
represents a geometric scalar that is an implicit function of ,β θ . The squared expression of ,Vβ θ can then be expanded 
with E  as in (10) into the form 
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Similarly, an expression for 0,V θ can be derived by setting 0β = ° in (12) 
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In (12), the terms with coefficients 2 3 4 6 8 10 13, , , , , ,K K K K K K K  can be replaced with 2 2
0, cos ( )V θ β , and the terms with 

the 2sin ( )β in (12) can be substituted by an expression extracted from (13). Also, by noting that 0β = °  and 0θ = °  in 

(12) yields 2
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Coefficients m  and n  in (15) can be evaluated analytically by considering the boundary conditions imposed on the 
sensor’s operation. For instance, for a full operation range of 0 90β≤ ≤ ° , 0 90θ≤ ≤ ° , the boundary condition 

, 90
0β θ θ = °

=V  generates the equation 
 

2
,0 0,0 cos ( ) sin( )cos( ){ } 0n mβ β β β− + − =V V     (16) 

 
and the boundary condition at the peak value of the voltage profile defined by the first derivative test 
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where '

0,θV  denotes the first derivative of  0,θV . Using (16) and (17), a simultaneous system of two equations with two 
unknowns can be resolved to yield two analytical expressions for m and n, which upon substitution in (15), generate the 
final expression for the self-calibrating model of the piezoelectric tilt sensor in Fig. 1 as 
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We note that this model represents a trigonometric function of β  and θ , and the genetic data ,0βV , 0,θV  and 0,0V , only.  
 

4. SIMULATION RESULTS 
Three simulation results are carried on a CAD model of the tilt sensor shown in Fig. 1 under variable temperature 
conditions shown separately in Figs. 3, 4 and 5. For the same dimensions of the sensor, the voltage output of the PZT 
layer varies as a function of temperature. However, since the self-calibrating model derived in (18) does not explicitly 
depend on temperature, the tuning of the model to account for these thermal variations is performed via re-calibration 
and re-generation of the genetic data ,0βV , 0,θV  and 0,0V , only. 
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Figure 3. Simulated and modeled data for the PZT voltage output at temperature 288°K for 0 : 5 : 90β = °  and 0 90θ≤ ≤ °  
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Figure 4. Simulated and modeled data for the PZT voltage output at temperature 303°K for 0 : 5 : 90β = °  and 0 90θ≤ ≤ °  
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Figure 5. Simulated and modeled data for the PZT voltage output at temperature 323°K for 0 : 5 : 90β = °  and 0 90θ≤ ≤ °  
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Figure 6. Maximum percent error offset (%) between modeled and simulated data as a function of 0 90β≤ ≤ °  
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The accuracy of the model in (18) is highlighted by cross-comparing the modeled data to the simulation data generated 
on CoventorWare. This cross-comparison is plotted in Fig. 3 for an operating temperature of 288°K, in Fig. 4 for a 
temperature of 303°K, and in Fig. 5 for a temperature of 323°K. Although all profiles in these simulations meet the 
boundary conditions, the offset between the modeled and simulated data tends to vary as a function of angle β. This 
variation is depicted in Fig. 6, where the maximum percent error offset is plotted over the full roll range of 0 90β≤ ≤ ° . 
Based on this chart, the maximum percent error remains under 4% over the entire β-range, with an average maximum 
error of 2.01% and a peak error of 3.92% occurring around the middle range. 

 

5. CONCLUSION 
In this paper, a self-calibrating model for a new MEMS piezo-electric dual-axis tilt sensor is presented. The derivation of 
the model shows that the resulting expression is independent of any geometric, structural, electro-mechanical or 
piezoelectric properties of the sensor and the PZT layer. This information is rather carried implicitly by genetic data 
generated through calibration. This makes the ensuing model impervious to variations in the operating conditions, such 
as temperature. This property, along with the accuracy of the self-calibrating model, were demonstrated through three 
case-study simulations with variable 288°K, 303°K and 323°K temperature conditions. Future work will investigate the 
generalizable aspect of the proposed self-calibrating modeling technique. 
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