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ABSTRACT 
This paper presents a new cost effective wireless telemetry 

system capable of estimating ambient air turbulence using RC 
helicopters. The proposed telemetry system correlates the RC 
helicopter’s flight dynamics with ship air wake patterns 
generated by cruising naval vessels. The telemetry system 
consists of two instrumentation units each equipped with 
aviation grade INS/IMU sensors to measure dynamics of the 
helicopter with respect to the concerned naval vessel. The 
presented telemetry system extracts ship air wake patterns by 
removing the helicopter dynamic effects from actual 
measurements. This paper presents a comprehensive 
comparison between popular machine learning algorithms in 
eliminating effects of pilot inputs from helicopter’s dynamics 
measurements. The system was tested on data collected in a 
wide range of wind conditions generated by modified YP676 
naval training vessel in the Chesapeake Bay area over a period 
of more than a year. 

NOMENCLATURE 
INS    Inertial Navigation System 
IMU Inertial Measurement Unit 
SAW Ship Air Wake 
PWM  Pulse Width Modulation (μs) 
RC  Radio Controlled 
BPNN Back Propagation Neural Network 
CFD Computational Fluid Dynamics 
ML  Machine Learning 
VTOL Vertical Take-Off and Landing 
BME Bayesian Mixture of Experts 
ANFIS Adaptive Neuro Fuzzy Inference System 
 

I. INTRODUCTION 
With a limited flight deck area, launch and recovery of 

VTOL aircrafts from naval warships is one of the most 
challenging tasks in naval aviation [1]. In addition to the 
‘rocking’ motion of the ships operating in high seas, local air 
turbulence acts as an important factor to be considered for the 

safety of naval aircrafts.  Ship air wakes are the trails of air 
turbulence left behind by the superstructure of naval ships. Ship 
air wakes create a high risk environment for operation of 
helicopters on landing decks. The interaction between the rotor 
wakes and ship air wake often results in unexpected motion of 
the helicopter. As the landing area on naval ships is limited, 
such unexpected motion pose potential hazard to both ship and 
helicopter. 

To minimize the operational risks due to ship air wakes, 
safe launch and recovery envelops are prescribed and used 
while operating VTOLs (helicopters) from cruising naval ships. 
These safe operational envelops depend on ship structure and 
are estimated by manual fight testing before any ship gets 
clearance for operating helicopters. This aircraft/naval vessel 
rating procedure, is not only expansive but highly dangerous 
and risky as the  pilots are asked to perform in an unknown air 
turbulence pattern with limited flight deck area for landing and 
takeoff.   In addition to the risks involved, such procedures are 
highly subjective since each pilot perceives impact of ship air 
wakes differently. Use of Computational Fluid Dynamics 
(CFD) models is a potential solution to this problem, but 
existing models are not mature enough to estimate ship air 
wake accurately [2-7]. Such CFD models require rigorous 
validation which further require unbiased test data [8-10]. The 
proposed telemetry system is designed to acquire this 
experimental ship air wake data.  

To obtain experimental ship air wake data, researchers either 
directly read wind velocities using anemometers arrays, or use 
scaled down wind tunnel measurements. Use of anemometers is 
easy but proves to be expansive and time consuming. In 
addition, the use of anemometers is limited to deck area only 
since they cannot be deployed for off board ship air wake 
measurements. Use of wind tunnel measurement for the 
estimation of ship air patterns has two main limitations: First, 
the turbulence patterns generated by scaled down models in 
wind tunnels are not linearly scaled. Second, both the model 
holder and wind tunnel walls affect the readings and would 
need to be accounted for. These factors motivate the need for a 
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 Figure 1.   Telemetry System hardware setup 

wireless instrumentation system capable of measuring ship air 
wakes from an off-board platform.  

Due to their relatively low mass, RC helicopters are more 
sensitive to ship air wakes compared to full-scale helicopters. 
This makes RC helicopters an ideal platform to measure ship 
air wakes. Use of RC helicopter’s vibrations to measure ship air 
wakes was first explored by [11]. However, this work was 
limited since it lacked any compensation for helicopter’s own 
vibrations due to pilot inputs. In addition, the system used 
onboard data loggers to record position and vibration data 
separately resulting in data that was not properly synchronized. 

This paper extends previous research [10, 12-15] by 
incorporating real-time wireless communication and 
compensation for pilot input in helicopter dynamics. The 
presented work focuses mainly on software and system 
modelling details of the latest iteration of the system and 
improvements in pilot input compensation. The main benefit of 
this system is its untethered long-range mobility enabling wide 
area coverage for data collection that does not alter the air wake 
patterns. Furthermore, the pilot input compensation features of 
the system ensures the unbiased ship air wake measurements.  

The previous work on this telemetry system [15] used only 
Back Propagation Neural Network (BPNN) to model the 
helicopter’s response to pilot inputs. This work presents three 
different machine learning technique: 1) BPNN, 2) Bayesian 
Mixture of Experts (BME) and 3) Adaptive Neuro-Fuzzy 
Inference System (ANFIS). These three ML algorithms were 
selected for modelling the system since they represent the 
simplest of the three basic categories in ML algorithm. BPNNs 
use error minimization and represent algorithms using gradient 
descent methods for to fit complex non-linear models on data. 
BMEs use simpler models (linear experts) to model complex 
data pattern and probabilistically mix them using expectation 
maximization. Thus, BMEs represent a class of Bayesian 
learning algorithms. ANFIS networks are fuzzy inference 
systems which use gradient-descent-type algorithms to tune 
fuzzy membership functions. As a result, ASFIS networks 
possess capabilities of both BPNNs (as they use error 
minimization for parameters optimization) and BMEs (as they 
use simple models during defuzzification process). As these 
ML algorithms are the simplest of their kind, prediction results 
from these algorithms will be similar to other complex 
algorithms of these kinds. 
 
II. TELEMETRY SYSTEM 

Wind turbulence is stochastic spatial variance of wind 
velocity and is often modelled on the basis of wave number of 
local velocity pattern [16]. Wind turbulence results in uneven 
wind loading of the rotor blades and adds undesirable heaving 

and oscillations to helicopter motion. Wind perturbations can be 
decomposed into two components: one in the plane of rotation 
of the main rotor blade (called in-plane turbulence) and another 
normal to it (called out-of-plane turbulence). The in-plane wind 
turbulence can be of thought of as an uneven wind distribution 
about the rotor hub. During continuous rotation, the motion of 
the rotor blades is in same direction as the wind for of a rotation 
cycle and opposite for the other half. In addition to this rotation 
effect, the unequal planer wind velocities also results in 
differential lift generation. This uneven lift makes the helicopter 
tilt (or even rotate) if not controlled. Similarly, the out-of-plane 
turbulence differentially changes the rotor influx which further 
results in differential thrust and tilting. This unexpected tilting 
can be detected by a gyroscope in the form of angular rates. 
The proposed wireless telemetry system uses an aviation grade 
INS/IMU sensor capable of reading helicopter’s fuselage 
angular rate and attitude at a high sampling rate.  

The proposed system consists of two independent 
instrumentation sub-systems called rover module and base 
module [15]. These modules communicate with each other via a 
long range Wi-Fi network with an update rate of up to 150 Hz. 
The Wi-Fi router utilizes two types of antennas, one Omni-
directional short-range rod antenna and another long range 
direction Yagi antenna. Fig. 1 shows hardware setup for the 
presented telemetry system. 

To estimate ship air wake patterns, an RC helicopter 
retrofitted with the rover module is flown in the target areas. 
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Figure 2.   Telemetry System : A) Bottom view of Rover 
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The rover module then sends the helicopter’s dynamics data to 
the base module over Wi-Fi. A computer connected to the base 
module records and processes the data and displays appropriate 
results/flight parameters on screen in the form of graphs and 
trajectories. Fig. 2 shows the annotated images of the rover 
module and the base module.  

During measurement, the proposed telemetry system is 
mounted on T-REX 600E PRO RC helicopter and flown in the 
lee (downwind) of the superstructure of the YP676 craft in a 
sweeping trajectory. The data received on the base computer 
processes and records the data in real-time. The relative position 
of the helicopter in the boat’s frame of reference is obtained 
from position and heading estimates from the VN200 INS on 
both modules. During post processing of the data, the system 
allows the user to select and use one of three different machine 
learning algorithms to process the data. The selected algorithm 
filters away pilot input components from angular rate 
measurements of helicopter and estimates the air wake impact 
on the helicopter. The air wake intensity in the form of 
dynamics of helicopter arising from air wakes is then plotted on 
helicopter trajectory relative to the ship. The YP676 is equipped 
with anemometer array to help the craft master to maintain 
constant relative wind conditions. Fig. 3 shows the telemetry 
system operating over the flight deck of the modified YP676 
craft. 

 
III. PILOT INPUT COMPENSATION 

The presented telemetry system uses the helicopter’s 
angular rates measured using a gyroscope to characterize ship 
air wakes. The biggest challenge in this process is that ship air 
wakes are not the only source of vibrations in helicopter. In 
addition to air wakes, vibrational noise due to the moving parts 
in the helicopter and pilot inputs/maneuvers constitutes a major 
component in helicopter vibration measurement. The vibrations 
due to ship air wakes can be extracted by removal of pilot 
induced vibrations and harmonic/vibrational noise from raw 
angular measurement. 

Helicopter motion is primarily controlled with a swash plate 
mechanism through cyclic control input. During flight, other 
than the effects of air wakes/turbulence, the main forces acting 
on the helicopter are rotor blade thrust, gravity, gyroscopic 
forces and air drag [16]. Fig. 4 shows free body diagram of the 
helicopter where yellow arrows represent forces, green arrows 
velocities and blue arrows frame of reference. A forward 
motion (Fig. 4) experiences a differential thrust (F1 and F2) 
along the longitudinal axis is applied through cyclic control. 
This different thrust makes helicopter tilt forward [17]. 

Any tilting or vibration of the helicopter disturbs the rotating 
rotor blades and stabilization bar from their plane of rotation and 
generates a gyroscopic torque (Tgy) opposing the rotation of 
helicopter.  While tilting forward, in addition to gyroscopic 
torque, helicopter experiences a pendulum like counter torque as 
the point of rotation (rotor hub) is higher than the center of mass 
of the helicopter. Due to high speed downwash from rotor, 
motion of helicopter faces significant viscous drag [15]. All 
these opposing torques make the angular velocity of the 
helicopter a non-linear function of pilot inputs and attitude. In 
this paper, the authors have modelled the helicopter’s non-linear 
response to pilot inputs in using the machine learning techniques 
BPNN, BME and ANFIS networks.  

 
IV. SYSTEM TRAINING 

For training the system, the telemetry system was flown in a 
large enclosed hangar in Davison Air Field. The hanger 
provided an air wake free zone to collect the training data for 
the machine learning algorithms. Four indoor flights were 
conducted with T-REX 600E Pro helicopter to collect training 
data. For collection of a versatile data set, the pilot was 
instructed to fly the helicopter in a variety of extreme 
maneuvers. To avoid ground effect disturbances [18] in training 
data, the helicopter was flown at a significant height (at least 2 
rotor diameters ~3m) from floor. During these training flights, a 
variety of helicopter maneuvers were performed. A versatile 
dataset of pilot inputs along with helicopter attitude with 
angular rates was created during these indoor experiments.  
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Figure 3.   Telemetry system operating on YP746 flight 



 4 Copyright © 2016 by ASME 

During these four indoor flights, a dataset of around 75000 
samples was collected. To ensure the prediction generalization 
of the system, only 6.25% of the total data was used for 
training. The remaining data was used for testing the 
performance of the system.  

For each of the three machine learning algorithms, three 
networks were trained to individually predict the three 
Cartesian components of helicopter’s angular rates from pilot 
inputs and attitude information. Thus, each network was trained 
with a 6-dimensional input vector consisting of the 3 swash 
plate servo PWM signals, 1 tail rotor PWM signal and 2 
attitude (pitch and roll) angles. The output vector was a one 
dimensional Cartesian component of helicopter’s angular rates. 
To improve the prediction accuracy of the networks, the 
complete dataset of input and output vectors was normalized to 
zero mean and unit standard deviation before training. 

Due to the cyclic nature of rotor input, the rotor thrust in a 
particular direction (plane passing through rotor hub) is 
pulsatory in nature. Since the other forces acting on helicopter 
are continuous in nature, these pulses of rotors show up the 
form of high frequency vibrational noise in the gyroscope 
reading and can be removed using frequency domain filtering. 
Since random sensor noise from the gyroscope is relatively 
small in comparison to this pulsatory high frequency noise, it 
has been neglected. In this paper, the authors have used an 
optimized low-pass Gaussian filter to remove this high 
frequency noise from data. To extract the signature of this 
pulsating noise, the helicopter was kept hovering for some time 
in each training flight. During this hovering period, minimum 
pilot inputs were provided so the helicopter so that only noise is 
captured by the system. Gaussian low pass filters with different 
parameters were applied on the hovering data until the noise 
was removed. During this experiment, a Gaussian low pass 
filter with a cutoff frequency of 11 Hz and kernel length of 1 s 
gave best results. The obtained filter cutoff frequency seems 
reasonable as the pilot input frequency never exceeded 5-6 Hz.  

To extract the ship air wake pattern, the pilot input 
component (predicted from the machine learning network) was 
subtracted from low pass filtered recorded data. To avoid any 
adverse effect on training process, the low pass filter was not 
applied on data before training. 

A. Training BPNN 

BPNN is a multilayer feed-forward network and uses error 
back propagation algorithm for training [19-22]. For prediction 
for pilot input component in helicopter’s angular rates, 3 
BPNNs each with 2 hidden layers were trained. The number of 
nodes in input and output layers were selected as 6 and 1 based 

on the dimensionality of the input and output vectors. The 
number of neurons in hidden layers were selected by trial and 
error. The number of neurons in both hidden layers were varied 
from 3 to 15. As weights of the BPNNs are selected randomly 
and the network converges at local optima in weight space, 
each network topology was trained 15 times. The network 
topology delivering the best prediction accuracy was retained. 
MATLAB’s ‘Neural Network Toolbox’ was used for error back 
propagation training with the Levenberg–Marquardt algorithm 
[23-24]. The “tansig” and “purelin” were used as activation 
functions for the hidden layers and the output layer respectively 
[25]. Ten-fold cross validation method [26] was used to prevent 
overtraining of the networks. Table 1 shows the final topologies 
for the three trained BPNNs. 
 
B. Training BME 
Bayesian Mixture of Experts (BME) is a type of directed graph 
network in which independent output of multiple subunits 
(Experts) are probabilistically combined into a single output 
[27]. Each expert consists of an observed continuous node and 
a hidden discrete node. The continuous hidden node (or output 

node) receives information from experts and linearly combines 
the estimated output value. MATLAB implementation of BME 
in ‘Bayes Net Toolbox’ [28] has been used in your system. Fig. 
5 shows the topology of the BME model used in the proposed 
system. As the dimensionality of the input data is 6, 6 experts 
have been used in this application. Increasing the number of 
states of hidden discrete nodes improves the prediction accuracy 
for the extreme inputs (which are statistically rare) but at same 
time increases the computational load exponentially. Thus, with 
a balanced trade- off between accuracy and computational load, 
each hidden node has been assumed to have 3 states. For a given 
input to an expert, hidden node estimates the likelihood values 
of coefficients corresponding to each state and probability of 
being in any particular state. The output node probabilistically 
combines the output of all the experts to give the final output. 

Table 1. BPNN topologies 

Neural 
Network 

Input 
Layer 

Hidden 
Layer 1 

Hidden 
layer 2 

Output 
layer 

Net1 (X axis) 6 5 5 1 

Net2 (Y axis) 6 5 7 1 

Net3 (Z axis) 6 4 8 1

S.P. PWM Signal

S.P. PWM Signal

S.P. PWM Signal

Tail PWM Signal

Attitude Roll

Attitude Pitch

Ang. Rates

Continuous Observed Node

Hidden Discrete Node

Continuous Hidden Node

 Figure 5. Topology of BME used in proposed telemetry 
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Figure 6.  Topology of BME used in proposed telemetry 

 
C. Training ANFIS networks 

Adaptive Neuro Fuzzy Inference System (ANFIS) is a type 
of feed forward network capable of supervised learning [29]. In 
practice, ANFIS networks are same as Fuzzy Inference Systems 
(FIS) [30]. Although both BPNN and ANFIS networks have 
similar topology, there is a significant difference between the 
two: BPNN optimizes network weights for given activation 
functions to minimize prediction errors, whereas ANFIS 
optimizes the shape of fuzzy Membership Functions (MFs) to 
minimize the prediction errors.  

ANFIS networks used in the presented telemetry system use 
a hybrid learning algorithm [29] (a combination of the least-
squares and back-propagation gradient-descent methods) to 
optimize a Sugeno-type FIS. MATLAB implementation of 

ANFIS training in ‘Fuzzy Logic Toolbox’ [31] has been used in 
the presented system, which cross-validates the models on a 
checking dataset to prevent overfitting of the training dataset. 
During the training phase, different types of MF shapes were 
tried on Sugeno-type FIS structure to be optimized, but 
‘Gaussian Bell’ shaped input MFs and ‘Linear’ shaped output 
MFs delivered acceptable prediction results. Because of 
memory constraints, the number of MFs was limited to 2 
although increasing the number could further improve the 
prediction accuracy. Three networks for each of the three 
network types (BPNN, ANFIS and BME) were trained 
separately to estimate the pilot input component in helicopter 
dynamics. Fig. 6 shows histogram plots of absolute prediction 
error of the three networks while predicting the Cartesian 
components of helicopter’s angular rates. To estimate these error 

 
Figure 7.   Prediction results from all the three machine learning algotithms  
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distribution histograms unseen test data from remaining indoor 
flights (~70K samples). The figure shows 6 histogram plots 
from the three networks. The plot legend extension ‘NF’ stands 
for ‘No Filter’, and represents prediction error with respect the 
original data. The plot legend extension ‘LPF’ stands for ‘Low 
Pass Filter’, and represents prediction error with respect the low 
pass filtered data. The histogram plots in Fig. 6 suggest that the 
BPNN outperforms both BME and ANFIS by delivering the best 
fit on training data. BME along with ANFIS, perform similar in 
modelling the pilot input components in helicopter’s noise.  

Fig. 7 shows prediction results of angular rates (in rad/s) 
from all the three types of networks on a short section (35 s) of a 
test flight. While assessing the prediction results (Fig.7), it was 
observed that both BME and ANFIS did not perform well on 
extreme pilot inputs like BPNN, but its performance exceed 
BPNN on medium/small pilot inputs and hence provided better 
generalization. This observation arises from two facts that 
BPNN uses error minimization during its parameter 
optimization, and both BME and ANFIS use simpler functions 
to model the pilot input data. This property makes BPNN 
susceptible to overfitting which is undesirable for ML 
applications.  

 
V.  OUTDOOR TESTING AND RESULTS 

To assess the systems performance, the telemetry system 
was used to estimate the ship air wake patterns generated by 
YP676 patrol craft in Chesapeake Bay. The pilot was instructed 
to fly the RC helicopter in a wavy trajectory in potentially 
active air wake areas.  We have hypothesized that the residual 
angular rates of the helicopter (angular rates after removing the 
pilot input component and noise) arise from ship air wake, the 
pattern of these residual angular rates represent the ship air 
wake patterns. Thus the spatial distribution of the magnitude of 
the residual angular rates has been presented as the ship air 
wake intensity pattern.  

Fig. 8 shows the residuals for angular rate measurements 
obtained from BPNN, ANFIS and BME algorithms on the 
helicopter trajectory. As hypothesized, these prediction 
residuals represent ship air wake patterns generated by the 
patrol craft. The trapezium shape in each of the plots represents 
the flight deck of the YP676. Relative high air wake zones have 
been marked by freehand contour in the three plots. The 
intensity map shows the spatial distribution of the magnitude of 
the residual angular rates. All three ML algorithms were able to 
detect high air wake zones in the central region of the flight 
trajectories. Relative sensitivity amongst the three ML 
algorithms has been assessed on the basis of DC bias (offset) in 
the intensity plots. It was also observed that the pattern 
generated using BME, showed least offset in intensity 
distribution and hence provides more reliable air wake patterns 
and higher signal to noise ratio. ANFIS networks delivered 
intermediate accuracy as the air wake patterns generated by it 
had low DC bias but, also showed sporadic high air wake 
inconsistent with the air wake patterns generated CFD 
programs [10]. BPPN performed better on training dataset but 
showed a significant DC bias in the final air wake patterns. This 

observation corroborated the fact that BPNN tends to over fit 
training data and in addition to pilot inputs components, it also 
modelled high frequency dynamics of the helicopter in angular 
rates measurements. 

 

 
Figure 8.  Ship air wake patterns (angular rate residuals 

in rad/s ) generated using the three ML algorithms  
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VI. CONCLUSION AND FUTURE WORK 

The proposed system provides a cost effective solution for 
mapping of wind turbulence in an area by using off-the-shelf 
RC helicopters. In general, this wireless telemetry system can 
be used to estimate any external disturbances on a helicopter. 
However, this paper demostrated the capability of the system in 
estimating ship air wake patterns. The telemetry system used 
three different machine learning algorithms to model the 
helicopter’s response to pilot inputs. This study confirmed that 
BPNNs are not the best ML tool to model helicoper dynamics 
as they tend to overfit training data. This study hence helped 
improve the accuracy of the system over the previous version 
that utilized only BPNNs [15]. It was concluded that out of the 
three ML algorithms, BME provided the most reliable air wake 
patterns. The main point to be noted is that, all these air wake 
patterns are basically patterns of residual angular rates. To 
convert these residual angular rates into actual air wakes (in the 
form of wind velocities), new calibration experiments 
(involving anemometers) will be required. The authors intend 
to calibrate this system in the near future in a known, 
artificially generated wind pattern to map residual angular rates 
with wind conditions.  
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