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 Abstract – This paper presents a neural network based 
heterogeneous sensor fusion approach towards real-time 
traversability estimation of mobile robots using sensor data.   
Even though significant advances have been made for 
autonomous navigation in structured terrain conditions, 
obtaining reliable traversability estimates for tracked vehicle 
navigation in challenging terrain conditions is still an open 
research problem. In this regard, we propose a neural network 
architecture capable of fusing depth images along with roll and 
pitch measurements on board the robot to perform 
traversability estimation. The proposed architecture is trained 
in a variety of simulated structured and unstructured 
environments. As such, the proposed architecture is capable of 
extracting the relevant features from the sensor measurements 
in a data driven manner as compared to existing heuristic 
based approaches that fail to generalize for different 
environmental conditions. The reliability of the traversability 
estimates provided by the trained architecture was validated in 
indoor and outdoor conditions using real sensor data. In 
addition, the feasibility of using the traversability estimates in 
incremental path planning was also demonstrated through 
simulation.  For both applications the proposed approach 
provided compelling results.  Inferences based on the results of 
the experiments along with directions for future research are 
also outlined. 
 

 Index Terms – Traversability, mobile robot, planning, 
neural network 
 

I.  INTRODUCTION 

 Autonomous navigation is a ubiquitous task for mobile 
robots. Great advances have been made in this domain, as 
demonstrated by the recent developments in self-driving 
vehicles, warehouse automation, and even smart vacuum 
systems that are now a common part of the households. 
Despite these advances, autonomous navigation in its true 
sense is still an open research problem for many challenging 
conditions such as tracked locomotion in unstructured 
terrain, which is the focus of this work.  

For car-like or Hilare [1] type robots moving in 
structured terrain, the presence or absence of obstacles can 
be used to determine traversability in a trivial manner. In 
comparison to structured environments, tracked vehicle 
locomotion in unstructured terrain offers additional 
challenges. Several factors such as the characteristics of the 
terrain in terms of slip, slope, and soil properties, 
characteristics of the robot in terms of weight and moment 
of inertia, actuator limitations, and the nature of the track 

profile all play major role in determining traversability. In 
addition, tracked robotic systems are capable of navigation 
over most obstacles owing to their inherent mechanical 
advantages.  As such, trivial estimation of traversability 
based on the presence or absence of obstacles will be an 
overly conservative approach for tracked systems.  
 All of the above factors make real-time traversability 
estimation using onboard sensor data a non-trivial problem 
for tracked systems. At the same time, estimating 
traversability is particularly important when it comes to 
reliable motion planning. For applications such as planetary 
exploration, it is mission critical to enable the system to 
obtain, understand, and utilize terrain information in real-
time [2].  
 A majority of the existing traversability estimation 
methods [2]–[4] involve heuristic based techniques that rely 
on a variety of factors such as the maximum  height of 
features in the terrain, slope, roughness, or even a 
combination of these as obtained from onboard sensors such 
as LIDAR, camera, Inertial Measurement Units (IMU), etc. 
These techniques are often specifically designed for the 
application at hand and do not generalize well for different 
environmental conditions. Others have used a full dynamic 
model of the robot along with the terrain map to determine 
the same [5], [6]. Even though they provide reliable results, 
full dynamic simulation of robot motion could be 
computationally intensive for the limited resources available 
onboard the robots. A detailed survey of existing geometry 
based and vision based terrain traversability methods is 
presented by Papadakis in [7]. 
 Traditional techniques as mentioned above require the 
researcher to explicitly define the relationship between the 
detected features from the sensor data and the traversability 
of the terrain. This is difficult due to the fact that the 
dynamic interactions between the robot and the terrain are 
too complex to accurately model. To address this issue, 
recently there has been more interest in learning based 
traversability estimation techniques that are capable of 
deriving the relationship from the given data.  Based on the 
diversity of the collected data, these techniques are capable 
of generalizing to environments with varied features and 
characteristics. In addition, even though the training process 
itself is computationally intensive, the trained machine 
learning (ML) architecture could be deployed with 
minimum hardware requirements, thereby improving the 
real-time applicability of these techniques. 
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In this regard, Murphy et al. [8] presented a Gaussian 
process (GP) technique to predict the traversability of 
unknown locations based on traversability estimates 
garnered from onboard sensing along with a-priori available 
overhead color images of the regions. Chavez-Garcia et al. 
[9] presented traversability estimation as a heightmap 
classification problem that could be solved using a trained 
convolutional neural network (CNN) based on terrain 
patches represented as images. Unsupervised classification 
of outdoor 3D LIDAR data for future terrain traversability 
estimations was presented by Maligo and Lacroixin [10]. A 
semi supervised learning approach, where the robot learns 
its traversability capabilities from a human operator was 
presented by Suger et al. in [11]. An approach towards 
correlating exteroceptive (terrain observations or images) 
and proprioceptive (acceleration signals) information to 
assess terrain manoeuvrability for mobile robots was 
presented by Bekhti et al. in [12], whereas proprioceptive 
sensing information including wheel slip, vehicle 
orientation, vibration, and power consumption were used to 
map instantaneous traversability in [13]. An approach 
towards combining separate  traversability maps generated 
from colour images and point clouds using Bayes’ rule was 
presented by Sock et al. in [14]. A detailed survey of recent 
learning based techniques towards estimating terrain 
traversability is given by Wong et al. in [2]. 

II. PROPOSED TECHNIQUE  

 This paper presents a novel learning based approach 
towards traversability estimation by using a neural network 
(NN) capable of combining heterogeneous sensor 
information to analyze terrain traversability in real-time. 
The proposed architecture consists of two convolutional 
layers and three dense layers as shown in Fig. 1. The 
convolutional layers operate on the depth image obtained 
from the Kinect sensor, while the dense layers operate on 
the output of the convolution layers stacked with the roll 
and pitch angles of the robot to generate traversability 
estimation. In comparison to existing state-of-the-art 
traversability estimation techniques, the proposed work 
offers the following novelties and advantages: 
 (1) The ability to combine heterogeneous sensor data: 
The proposed approach uses depth data of the robot’s 
surroundings along with roll and pitch of the platform as 
input to the NN architecture. Even though there are previous 
approaches towards combining separate traversability maps 

from different sensing modalities [14] and also for 
correlating different sensor inputs [12], to the authors 
knowledge this work is the first attempt towards training a 
single neural network to use heterogeneous sensor data for 
estimating terrain traversability.  
 (2) Prior knowledge of the environment is not required: 
Existing learning based terrain traversability approaches in 
the literature require prior knowledge of the environment in 
some form, such as 3D maps [9], or overhead images [8].  
There are many real-life applications of field robotic 
systems where prior information is not available. As 
mentioned by Shan et al. [3], assuming the prior availability 
of a 3D map can severely limit the reliability of these 
techniques when it comes to field robotic applications. The 
proposed approach on the other hand only relies on real-
time sensor data using onboard sensors. 
 (3) Use of simulations for generating training data: 
Unlike existing approaches [10],[11] that use experimental 
data for training the traversability estimation techniques, the 
proposed approach uses training data generated from a high 
fidelity simulation. A robotic simulator capable of 
accurately modelling the dynamic motion of a mobile robot 
over challenging terrain conditions along with the sensor 
outputs was used. This allowed generating a diverse training 
dataset without any damage to the real robot, while ensuring 
that the trained policies are applicable to real-life conditions.  
 It should be noted that, even though combining sensory 
inputs inside a neural network and using simulations to 
generate training data has been explored previously in the 
machine learning community; this is the first time the above 
approaches are being used for traversability estimation. The 
remainder of the paper is organized as follows; Section III 
describes the use of robotic simulators to obtain accurate 
and extensive training data for the NN architecture. Section 
IV describes the proposed NN architecture and the 
methodology to combine roll and pitch data along with 
depth images obtained from a Kinect sensor. Section V 
describes the experimental validation of the proposed 
technique in performing traversability estimation in real-life 
conditions. Section VI validates the applicability of terrain 
traversability estimations in incremental path planning over 
unstructured terrain conditions outside of the training 
environment. Section VII concludes the paper with 
directions for future research.  

III.  DATA COLLECTION IN SIMULATED ENVIRONMENT 

 One of the major difficulties with the use of ML based 
methods in robotics is the need for extensive and accurate 
datasets. In order to accurately judge whether or not a 
particular maneuver can be performed, the robot must 
actually perform the maneuver. Since the dataset will need 
samples of both feasible and non-feasible cases, the robot 
will have to perform maneuvers that could cause potential 
damage. In order to create an extensive and accurate dataset 
without damaging the robot, a robotic simulator, V-REP 
(Virtual Robotics Experimentation Platform) [15] was used 
to perform the desired maneuvers and record the results 
along with the simulated sensor data. 

 

Fig.1 Overall layout of the proposed neural network architecture. 
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 V-REP is a robotic simulator by Coppelia Robotics. 
This cross platform software allows simulating robotic 
platforms including a variety of sensors and actuators, along 
with realistic physics engines that support dynamic 
simulations of robot motion.  A tracked robotic platform 
with a Kinect depth sensor attached to its front was made to 
travel along a simulated terrain condition consisting of hills, 
valleys, and structured terrain consisting of walls, ramps, 
and bumps as shown in Fig. 2. The virtual terrain of size 
60x60 m for the simulation was created in Blender using the 
Ant plugin [16]. Due to the varying terrain conditions, the 
frictional resistance experienced by the tracked robotic 
vehicle is not the same on both sides. As such, providing the 
same velocity command to both tracks does not guarantee 
that the robot will drive straight, even in the simulator.  This 
makes it necessary to have a closed-loop controller running 
during the data collection simulations. Moreover, the same 
low-level controller is used on the actual robot for the 
experimental validation. As such, simulating the controller 
during data collection makes the data more representative of 
the actual motion of the robot in real-life conditions.  

The motion of the robot in the simulation was 
performed using a low-level controller that assumed a 
unicycle robot model as given by  

x Vcosθ	
y Vsinθ	
θ 	ω 

(1) 

where ,  is the 2D position and 	 represents the 
orientation of the robot fixed frame with respect to the 
global inertial frame, ω is the angular velocity of the robot, 
and V is the linear velocity. Assuming the goal location is at 
the coordinates (x , y ), the desired orientation of the robot 
is given by:  

 
θ∗ tan

y y

x x
 (2) 

 The error in orientation is given by	e 	 θ∗ ⊖ 	θ	where 
⊖	denotes difference taking into account the wraparound of 

angles. The PD (Proportional-Derivative) controller for the 
angular velocity of the robot is given by: 

 ω k e 	k e.  (3) 

where  and  are the proportional and derivative gains. 
The linear velocity of the robot is scaled based on  so that 
the robot slows down before making sharp turns. This 
allows for a smoother navigation. The maximum linear and 
angular velocity commands from the controller were limited 
to 0.03 m/s and 1.0 rad/s, respectively. Once the desired 
linear and angular velocities have been calculated using the 
low level controller, they can be transformed into the 
desired left and right track velocities using the 
transformation equations between differential drive and 
unicycle robot models before they are applied to the tracked 
robot. 
 It should be noted that even though the low-level 
controller presented here is based on robot kinematics, V-
REP performs a full dynamic simulation of the robot motion 
at each instant. Before conducting the data collection 
simulation, the weight, size and actuation limits of the 
simulated robot were adjusted to be the same as that of the 
hardware used for experimental validation, STORM [17]. 
The simulated robot was 0.41 m in length, 0.3 m in width 
and 0.12 m in height with a total weight of 9 kg, similar to 
the actual robot. The torques applied on the tracks were 
limited to a maximum of 10 Nm with a PID (Proportional-
Integral-Derivative) speed controller simulating the 
performance of the motor driver on the actual robot. This 
further reduced the possible mismatches between the 
behavior of the simulated and real robot. 
 For the purpose of data collection, the low-level 
controller was implemented in MATLAB and was made to 
communicate with V-REP. Based on the simulated robot 
pose , ,  as obtained from V-REP, the desired control 
commands were sent back from MATLAB during the 
simulation.  
 In order to create the training instances, the simulated 
robot was placed at random poses on the simulated terrain 

 
 

 
Fig. 2 Data collection through simulation: (A) Tracked platform with Kinect on simulated outdoor terrain, (B) Topography map of the terrain used. 

Simulated indoor scenarios (C) Facing a wall, (D) Facing edge of platform, (E) Facing inclined ramp, (F) Facing bumps of varying size. 
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and checked for static stability. Once the robot was stable, a 
depth image of the area directly in front of the robot was 
obtained from the simulated Kinect sensor, along with the 
roll and pitch of the robot. This data was sent to MATLAB 
and stored. The robot was then required to move towards a 
goal location directly in front of the robot at a fixed distance 
of 1m using the closed-loop controller. If the robot was able 
to reach within 0.1m of the goal location within 75 seconds 
of simulation time, the motion was recorded as successful, 
and if not, as a failure. 
 Ten thousand instances of robot motion were simulated 
to create an extensive and accurate dataset. This dataset was 
used as training and test data for the proposed NN 
architecture, as shown in Fig. 1. Each training instance 
consists of a depth image (48x64 array) of the region in 
front of the robot, roll and pitch (normalized values) of the 
robot before the motion was started, and the result of 
whether the motion was successfully completed. 

IV.  NEURAL NETWORK (NN) ARCHITECTURE 

 This section explains the proposed NN architecture 
which incorporates the depth image and the IMU data to 
predict traversability of the terrain. The proposed 
architecture consists of two convolutional layers and three 
dense fully connected layers.  
 The convolutional layers process the depth images to 
extract features that correspond to the traversability of the 
terrain. Each convolutional layer consists of 32 filters with 
2x2 kernel size followed by a max pooling layer with the 
same kernel size. For the proposed architecture, the 

convolution kernel is regressed inherently as part of the 
training process. IMU data is fed into the network through 
the first fully connected layer. This is done by concatenating 
the IMU data with the flattened output of the second 
convolutional layer in order to improve the accuracy of the 
final prediction. Each fully connected layer consists of 256 
neurons except for the last one, which consists of only one 
neuron to perform the traversability prediction. A sigmoid 
activation function is used in the prediction layer while all 
the other layers use leaky ReLU activation function [18], as 
given by 

 0
0.02

 (4) 

 The neural network is built and trained in Keras with 
TensorFlow [19] as the backend using Adam optimizer [20]. 
A block diagram representation of the proposed neural 
network architecture is provided in Fig. 1. 
 In order to prevent scaling of the weights based on the 
varying units of the incoming heterogeneous data, 
normalization was performed on the raw input data before 
being fed into the NN. The raw depth image was clipped to 
measure only between 0m to 4m and then normalized 
between [0,1]. The IMU data was clipped between [-40, 40] 
degrees and normalized within [0, 1]. 
 To train the NN, the dataset was split randomly: 9,000 
samples were used for training and 1,000 samples for 
validation. Both training and validation datasets contained 
approximately half traversable and half non-traversable 
samples. The batch size used for training was 128 and the 
learning rate was set to 0.001. Adam optimizer [20] in Keras 
was used for the training. As shown in Fig. 3, the proposed 
architecture gave an average validation accuracy of 80% 
after ten epochs, with the lowest loss on Epoch 17. To avoid 
overfitting, the best weights of the NN were saved by 
monitoring the minimum loss of validation during the 
training process. The trained architecture provided 91.6% 
accuracy on detecting true positives (traversable) and 72.0% 
accuracy on detecting true negatives (non-traversable). 

V.  EXPERIMENTAL VALIDATION 

 One of the inherent issues with training ML 
architectures inside simulations is that the real-world 

 
Fig. 3 Variation of the training and validation accuracy with epochs. 

 

 
Fig. 4 Experimental validation in structured and unstructured terrains: (A) Experimental platform, (B) Facing a wall, (C) Facing a ramp, (D) Facing  

steps, (E) Facing a wall in an outdoor terrain, (F) Going downhill, (G) Going uphill at an angle, (H) Facing a step in an outdoor terrain. 
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scenario could be different from the math model underlying 
the physics simulation. This is particularly true in case of 
training using synthetic RGB images [21], [22]. Even 
though the trained architecture may work well in simulation, 
model mismatch issues can make transfer of knowledge 
from the physics simulator to the real-world difficult. As 
such, it is important to validate the performance of the 
trained architecture in real-world conditions. 
 The experimental validation involved testing the 
proposed NN architecture in five structured indoor and four 
unstructured outdoor scenarios, some of which are shown in 
Fig. 4. Fig. 4 (B)-(D) denote indoor conditions and (E)-(G) 
denotes outdoor conditions. Similar to the simulated 
scenario, a tracked robotic system, STORM, fitted with a 
Kinect sensor and IMU, was used for the experimental 
validation. As in the case of data collection simulations, a 
depth image of the terrain in front of the robot, along with 
the orientation of the robot was sent to the trained NN 
architecture. It should be noted that the trained architecture 
was deployed on the hardware for experimental validation 
without any additional tuning. Moreover, the outdoor 
experiments were conducted after sunset to reduce the 
infrared interference from sunlight with the Kinect.   

TABLE I 
EXPERIMENTAL VALIDATION RESULTS  

Terrain condition 
Roll 

(Degree) 
Pitch 

(Degree) 
Accuracy 

Ground 
truth 

Facing steps (I*) -1.00 -0.88 91.43% N* 

Facing wall (I) 0.37 -2.25 88.57% N 

Facing wall at an 
angle (I) 

0.74 -2.06 86.00% N 

Facing edge of 
platform (I) 

-0.62 -1.44 89.71% N 

Facing ramp (I) -0.25 -2.32 70.29% T* 

Facing wall (O*) -2.64 -13.6 86.93% N 

Going downhill (O) -5.80 28.88 96.00% T 

Going uphill (O) -1.60 -35.70 92.00% T 

Facing step (O)  -1.36 10.81 85.71% N 

* I – Indoor, O – Outdoor, T – Traversable, N – None-Traversable. 

 In each case the robot was placed at a distance from 
possible obstacles and the low level controller on the robot 
was used to drive the robot straight with a constant linear 
velocity of 0.01 m/s. Throughout the process, the onboard 
sensor data was used to estimate traversability in real-time. 
For all the nine test cases, roll and pitch of the robot, and the 
accuracy as compared to ground truth are summarized in 

Table 1. The real-time traversability estimates from four 
different scenarios are shown in Fig. 5. For non-traversable 
cases the ground truth shifts from traversable to non-
traversable when the robot is 1m away from the obstacle. As 
mentioned in [21], “Depth images can abstract away many 
of the challenging appearance properties of real-world 
objects”. This helped in transitioning the neural network 
policy from simulated training to real world implementation 
without significant loss of performance as evidenced from 
Table 1 and Fig. 5. The results show that the proposed 
technique works well in both indoor and outdoor scenarios.  

 VI. PATH PLANNING APPLICATION  

 The feasibility of using real-time traversability 
predictions as obtained from the trained architecture for 
incremental path planning applications was validated 
through simulations. The same tracked robotic vehicle 
model used in the data collection simulations was also used 
for the path planning simulation.  

The traversability estimations from the trained 
architecture were used to update an incremental planner, D* 
Lite [23] to enable an autonomous tracked vehicle to 
successfully navigate to a goal location without any prior 
maps. The overall navigational architecture consisted of 
D*Lite as the high-level planner which starts off with a grid 
map (each unit being 0.5x0.5 m) having the start and goal 
locations, the low level PID controller that drives the robot 
to each waypoint as dictated by the planner, and the NN 
architecture that informs the planner about possible 
obstacles in front of the robot. In order to reject false 
detections, the map was updated only when the NN 
predicted non-traversability continuously for five iterations.  
The planner then updates its map based on the detected 
obstacles. The simulation was performed in V-REP, with 
the navigation architecture implemented in python. For the 
duration of the simulation, the x, y position and roll, pitch, 
yaw orientations of the robot were given to the navigation 
architecture along with the depth images, which in turn 
returned the control inputs to V-REP. The path planning 
simulation was performed on unstructured terrain map 
(3.5x3.5 m), outside of the training data. Under the proposed 
navigation architecture, the robot avoids the steep hill in the 
middle and goes around as shown by the topography map in 
Fig. 6. It can be seen clearly that the robot successfully 
modifies its plan in real-time based on the traversability 
estimates during navigation. It should be noted that the 
robot did not possess any other sensors to detect obstacles 

 

 
Fig. 5 Variation of traversability estimates over time in structured and unstructured terrains: (A) Facing a wall at an angle (Indoor), (B) Facing an 
edge of the platform (Indoor), (C) Going downhill (Outdoor), (D) Facing a wall (Outdoor).  T denotes traversable and N denotes non-traversable.  
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and the path planning algorithm was solely informed by the 
trained NN architecture.  

VII.  CONCLUSION 

 This paper presented a neural network architecture that 
takes in depth images, along with roll and pitch angles of 
the robot to perform real-time traversability estimation. The 
training data was obtained from a robotic simulator that 
allowed for a wide variety of training conditions to be 
simulated, without causing any damage to the actual robot. 
The developed approach was validated in indoor and 
outdoor conditions, along with applications to incremental 
path planning. As mentioned in Section V, the experimental 
validation was limited due to the interference of Kinect data 
with sunlight. Even though this paper described the use of a 
Kinect to obtain the depth data, the overall approach is 
generalized towards the use of any depth sensor such as 
Velodyne, capable of working outdoors.  
 Future work will explore different architectures such as 
Long Short Term Memory to improve the performance of 
the learning based traversability estimation techniques. 
Color images of the environment as obtained from cameras 
could be easily integrated into the proposed architecture to 
improve the estimation accuracy. Most robotic simulators 
including V-REP and Gazebo have photorealistic rendering 
modes with accurate camera models that could be used to 
generate the training data in such cases. Similarly, slip 
experienced by the vehicle is another major factor that could 
affect the traversability of a given region. Including slip and 
color images to the architecture and analyzing their effect on 
traversability predictions will be explored as part of future 
work. Detailed performance evaluation of the proposed 
approach in comparison with existing probabilistic methods 
will also be addressed in the future. 
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Fig. 6 Path planning in unstructured terrain condition. The start and goal 

locations are marked in blue and green dots, respectively. The path 
followed by the robot is marked in a solid red line. 
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