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SUMMARY
As researchers have pushed the limits of what can be
accomplished by a single robot operating in a known
or unknown environment, a greater emphasis has been
placed on the utilization of mobile multi-robotic systems
to accomplish various objectives. In transitioning from
a robot-centric approach to a system-centric approach,
considerations must be made for the computational and
communicative aspects of the group as a whole, in addition to
electromechanical considerations of individual robots. This
paper reviews the state-of-the-art of mobile multi-robotic
system research, with an emphasis on the confluence of
mapping, localization and motion control of robotic system.
Methods that compose these three topics are presented,
including areas of overlap, such as integrated exploration and
simultaneous localization and mapping. From these methods,
an analysis of benefits, challenges and tradeoffs associated
with multi-robotic system design and use are presented.
Finally, specific applications of multi-robotic systems are
also addressed in various contexts.

KEYWORDS: Multi-robotic systems; Mobile robots;
Motion planning; Robot localization; SLAM; Path planning;
Robotic exploration.

1. Introduction
As trends in robotics have pushed toward liberating robots
from fixed positions in their environment and allowing
them to interact with one another, research in multi-
robotic systems (MRS) has grown from a novelty to a
critical area for consideration and investment. This transition
from an individual approach to a collective approach in
designing and utilizing systems requires an augmentation
of local considerations (such as electromechanical
layout, on-board computational ability and robot-operator
communication) with global considerations (such as inter-
robot communication and task assignment).

The motivation of this work is to present the state-
of-the-art for MRS, with a particular emphasis on the
intersection of mapping, localization and motion planning.
During operation, a map is necessary to enable long-term
planning; it may be known beforehand or generated during
movement throughout the environment. When utilizing a
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map, there is a need to localize the system within that map in
terms of sensing its own and its environment’s properties. In
order to traverse the environment there must be some sort of
motion plan to navigate the system from an initial pose to a
desired pose while avoiding obstacles as they appear on the
way.

Figure 1 shows these three requirements graphically in a
Venn diagram, with the overlaps between them categorized.
Simultaneous Localization and Mapping (SLAM) describes
a class of algorithms that allows for the simultaneous building
of a map and placement of the robotic system within it,
decoupled from the motion planning required to traverse.
When that motion planning is coupled to SLAM, integrated
exploration is the result, providing a unified framework for
the discovery of an unknown environment or verification.

Active localization and classic exploration are included
in the figure for completeness, though they are not major
research topics. For the former, it is not realistic to assume
a perfect map of any space; therefore, any attempts at active
localization would be hindered by not including protocols
to validate/update the map during operation. For the latter,
a mapping operation will quickly fail if the robot is not
constantly being localized within the built map.

The paper is organized as follows: Section 2 addresses
the methods associated with MRS organization, mapping,
localization, motion planning, SLAM and exploration;
Section 3 extrapolates from these methods the benefits,
challenges and tradeoffs associated with the field; Section
4 addresses the practical implementation of MRS, including
applications and sensor technologies used to instrument
systems in real-world scenarios; and Section 5 summarizes
the review and draws conclusions from it.

This paper is motivated by the difficulty new researchers
have in understanding the multitude of fields composing
mobile MRS. By beginning with the core subjects of
mapping, localization and motion control, then analyzing
their combinations in terms of SLAM and integrated
exploration, the progression of technology from its earlier
stages to the state-of-the-art can be better understood.
Furthermore, by breaking down the analysis in terms
of the methods, benefits/challenges/tradeoffs and practical
implementation of the fields, a better grasp of the
interconnections of the fields is achieved. This review is
not designed to be all encompassing – rather, it equips new
researchers with a fundamental understanding of the field
and gives them the tools they will need to further explore and
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Fig. 1. Fields associated with robotic exploration (adapted from
ref. [1]).

Fig. 2. Network organizations: (a) centralized, (b) hierarchical and
(c) decentralized.

understand specific areas of interest. Furthermore, it provides
a wealth of sources to experienced researchers in the field to
better understand the state-of-the-art of the past decade, with
an emphasis on the most recent five years.

2. Methods
In order to understand the challenges associated with MRS,
an understanding of the current methods used in MRS
is necessary. These methods include strategies for (1)
organizing the communication and mechanical components
of MRS, (2) storing and manipulating environmental data
in maps, (3) localizing the MRS both internally and with
respect to its environment, (4) planning the motions of
the member robots, (5) simultaneously localizing the MRS
while mapping its environment and (6) incorporating this
simultaneous localization and mapping with motion planning
to explore the environment.

2.1. Organization
A fundamental constraint on the operation of an
MRS is its network organization or architecture. Three
fundamental architectures exist: centralized, hierarchical and
decentralized, as shown in Fig. 2. Centralized architectures
focus all communication and computation through a single
entity, either a member of the robotic team or an external
controller.2 While this architecture simplifies the control by
allowing a single entity to know the entire state of the global
system, it is prone to failure if this single agent or controller
fails.

Hierarchical architectures borrow from centralized
architectures by having a single robot control a group
of robots, but the hierarchical approach is stratified, with
members of one controller’s group each overseeing another
group of robots, and so on, until there is a strata of robots

that simply perform tasks. While this method does allow for
greater fault tolerance “lower” in the hierarchy, the system
is still prone to failure if a robot high in the command chain
fails.3

Decentralized architectures provide the greatest flexibility
of the MRS network architectures by not having any
single potential point of failure. Instead, the communication
among units and computation associated with planning and
execution is performed locally, with minimal communication
among modules. While this architecture is immensely
more fault-tolerant than the previous two, it becomes
much more difficult to articulate “global” goals into local
controllers because of the controllers’ reduced reliance on
one another.4–6 As shown in Fig. 2(c), different types of
decentralized strategies exist: the system may only be able to
communicate in a “ring” structure, as shown with solid lines,
or may allow for full communication, as shown by the solid
and dashed lines.

A fourth category, hybrid architectures, employs elements
of multiple network architectures. Simmons et al.7

employed a hybrid architecture that allows for decentralized
planning/execution of the robot’s actions and cooperation
among these planners on different systems.

Beyond the communicative aspects of organization, there
may exist physical connectivity between robots, either
permanent or temporary. Ben-Tzvi et al.8 presented a
robotic system composed of three permanently connected
yet individual subsystems, with wireless communication
facilitating their collective use. Kim et al.9 designed several
permanently coupled robotic systems, with the coupling
either directly between robotic modules or through an
external load.10 O’Grady et al.11 described a robot design
with manipulators that would attach to other robots, creating a
rigid structure, but with the ability to disengage and continue
separately if necessary.

2.2. Mapping
Once a robotic network is established, there are significant
benefits from understanding the environment in which
it is operating. These benefits include better situational
awareness and a baseline for long-term planning, compared
to acting solely in response to sensed data. A robotic
system’s understanding of its environment is its map. While
colloquial understanding of a map is a two-dimensional (2D)
representation of a space, the maps utilized by MRS may (but
not necessarily) take drastically different forms. The data a
map contains are driven primarily by the needs of the system
for its specific application. Furthermore, a necessary feature
for the MRS maps is the capacity for merging maps built by
individual robots to form a global representation of the space
(if the map is unknown a priori).12

2.2.1. Types of maps. One of the most common and intuitive
types of maps used by MRS are occupancy-based grid maps,
first described by Elfes in 1989.13 Occupancy-based grids
decompose a space into a regular grid and assign a value
to each element of the grid to denote the probability of its
occupancy by an obstacle. Range-sensors, such as LIDAR,
SONAR or stereovision, can be used to update this map as
the robots traverse the space and collect information about
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Fig. 3. Occupancy-based grid map.

Fig. 4. (Colour online) Typical feature-based (a) point map, (b) line
map.18

unvisited and previously visited cells. Benefits of occupancy-
based grid maps are their ease of merging and flexibility in
incorporating data from numerous different types of sensors.
Challenges associated with occupancy-based grids are the
high computation expense to maintain large grids and the
difficulty in extracting optimal paths from a grid-based
map without human intervention.14,15 An example of an
occupancy-based grid is shown in Fig. 3, with clear areas
in white, obstacles in black and unexplored areas in gray.

Feature-based maps, also called geometric or polygonal
maps, utilize geometric primitives such as points, lines and
arcs to represent obstacles in a space, as shown in Fig. 4.
An advantage of feature-based maps is their computational
efficiency: in occupancy grids, data are stored whether or
not there is an obstacle in the grid; in feature maps, only
the obstacle data are stored, mapped in a local or global
coordinate frame. This reduced computational load facilitates
motion planning and exploring (Sections 2.4 and 2.5). A key
difficulty is extracting the simplified features from the raw
sensor data in an efficient and reliable way.16–18

Topological maps allow for a space to be broken down into
a graph comprising nodes, which represent physical locations
within the space, and lines, which connect the nodes and
signify paths between these discrete spaces, as shown in
Fig. 5. This significantly reduces the computational load of
utilizing the map in applications such as motion planning,
but accompanying this computational simplification is a

Fig. 5. (a) Physical environment, and (b) topological repre-
sentation.22

reduction in useful information regarding the nature and
structure of the actual environment.19–21

While 2D mapping is the most common objective in most
ground robotic activities, there are cases when volumetric
maps become necessary. Rocha et al.23 demonstrated the
utilization of occupancy-based grid mapping to create
volumetric representation, with a grid comprising voxels
(cubes) versus squares and an experimental implementation
using stereo vision sensors. A typical volumetric map is
shown in Fig. 6.

In some scenarios, multistorey maps allow for
generalizations to be made when exploring multiple floors
of the same building. These generalizations utilize the
knowledge that different floors of the same building, in most
cases, have the same general footprint and layout. While in
specific cases (e.g. cubicle arrangement) the arrangement
of obstacles may be different, features such as columns,
stairs and elevators serve as absolute benchmarks with which
correspondence can be drawn, as shown in Fig. 7.24

Beyond physical layouts and their topological abstractions,
image maps allow for camera-type sensors to more reliably
map their environments by storing the previously taken
images. This method is an extension of topographical
techniques, but instead of storing a location or a region
of the space in a node, an image is stored, and the lines
connecting these nodes represent correspondence between
different images.25

Hierarchical maps allow for the integration of these
different types of maps into a single framework to allow
systems to utilize the minimal amount of data needed for
a specific task without the loss of the entire data set.
Generally, these hierarchies will consist of a topological
map for generalized path planning (due to its computational
efficiency) and an occupancy-based grid for its ease of
creation, as shown in Fig. 8.26 However, other topological
maps have included image map layers25 or higher level
feature identities.27

2.2.2. Merging maps. In any system with multiple robots
performing mapping of the environment, there is a need
to merge local maps produced by individual robots with
one another in an automated, accurate and reliable manner.
The most intuitive mechanism for merging maps is their
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Fig. 6. (Colour online) Typical volumetric map.23

Fig. 7. (Colour online) Map of two adjacent building floors: (a) before correspondence, and (b) after correspondence.24

Fig. 8. (Colour online) Hierarchical maps: (a) topological and geometric sub-maps, and (b) overlain sub-maps.28

superposition based on the known initial configuration of
the robots relative to one another and/or a global landmark.
However, while this task seems trivial, it requires an accurate
understanding of the robots’ current positions relative to their
original configuration; a problem addressed by localization
(Section 2.3).

If the original configuration is not known, or the current
positions of the robot do not possess the necessary accuracy,
merging based on other metrics is possible. The first is
correspondence, where recognizable arrangements of scan
points, such as doors, junctions and corners, are isolated
within different maps and analyzed for overlap. This method
has been applied to both occupancy grid maps29 and feature-

based maps.30 A key challenge associated with this method
is the need for overlap of the map; the algorithm must be
able to recognize when this does not occur, as opposed to
joining maps at the “best” correspondence site, especially if
the “best” is not good. This challenge is illustrated in Fig. 9.

Relative position estimation is another mechanism for
merging maps, where two or more robots estimate the other’s
position relative to itself, and those two local estimates
are combined to provide a better overall estimate. A key
advantage of this method over correspondence is the ability
to merge maps without overlap; robots do not need to have
visited the same segment of the environment, but simply
possess a robust method of estimating relative positions.31
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Fig. 9. (Colour online) Merging maps: (a) local sub-maps, (b) erroneous merging and (c) correct merging.29
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Fig. 10. State knowledge vs. computation requirements for merging
maps.

Rendezvous is a fourth method of merging maps, where
two robots approach and meet one another in order to
generate a common point (their target location) in both of
their maps, with a relative position estimate with very high
accuracy (because of their closeness). This is an extension of
relative position estimation, but the relative position becomes
the same position due to the motion of the robots toward one
another.32

Figure 10 compares these four methods with respect
to their state knowledge and computational requirements.
Because correspondence solely utilizes the map information
to determine overlap, there is a heavy computational
requirement in processing of maps. At the opposite end
of the spectrum, relative position methods require precise
knowledge of the robots’ states relative to one another at
each moment mapping occurs in order to successfully merge
maps. Between these extrema, the rendezvous and known
initial configuration methods require both state knowledge
and computation; however, because the rendezvous method
requires the robots to approach one another, there is a greater
computational cost. It should be noted that this analysis does
not consider the computational requirements for localization
(which the rendezvous, known initial configuration and
relative position methods require); the computation strictly
relates to the effort that must be expended to merge the maps.

2.2.3. Additional mapping-specific issues. In topological
maps, a pressing challenge is ensuring cycle detection, or

Fig. 11. (Colour online) Cycle detection/loop closure.33

loop closure. This is required when the topological map
rejoins a previously visited node. Because of the serial nature
by which nodes are created as robots move along their
paths, it is not trivial for it to recognize a previously visited
point when and its most recently generated node should be
connected to an “older” node.21 Figure 11 illustrates this
point; if the original node was not detected, the robot would
need to traverse around the generated path to return to the
door.

Depending on the environment being mapped, a spatial
map correction may be necessary, even in a 2D environment.
Grisetti et al.34 used simulations and experimentation to
determine spatial corrections for 2D maps both numerically
(with simulations of a robot mapping a sphere) and
experimentally (with a robot traversing a college campus
with hills), as shown in Fig. 12.

Because of the prevalence of cameras as sensors, image
extraction is a key challenge in building various maps
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Fig. 12. Simulations of 3D planar mapping: (a) without 3D
correction, and (b) with 3D correction.34

described previously. Specifically, the ability to isolate
features from the images, and incorporate these features into
the map being generated or to match these features to a map
already known is critical in utilizing these sensors in addition
to or instead of more quantitative range of finding sensors
such as SONAR.25 Figure 13 shows post-processed images
to extract the planar features, with different detected planes
in different colors.

While research has primarily focused on static
environments, modifying maps in dynamic environments
is a critical challenge in translating this field of research
into widespread use. The key challenge lies in detecting
the change in the environment – to know with confidence
that an obstacle that was present at one time is no longer
present, or vice versa. While the Bayesian update procedures
are common in refining the map as robots traverse the
space, considerations need to be made for radical changes
in occupancy, feature-distribution or graph connectivity,
depending on the map being used.35,36

2.3. Localization
In order to effectively utilize a map of the environment
or to generate such a map ab initio (discussed in Section
2.5), localization is needed to understand where robots are
within their own maps and/or their environment. In single-
robotic systems, localization has two key components: local
and global. Local localization, also called position tracking,
refers to the accurate tracking of each robot’s current location
relative to its start point. Global localization, also called
global self-actualization, refers to the accurate tracking of
each robot’s current location relative to its environment.
When the start point of each robot within the environment
is known, these problems collapse into a single localization
problem, but when the start points are unknown, they remain
distinct yet coupled.37,38

In MRS, collective or mutual localization, a third type,
emerges when there is a need to know the relative positions
of each of the robots with respect to one another. It is a
more challenging problem than position tracking, but simpler
than global localization (though it becomes trivial if a global
localization for the entire system is already available). Work
has also been presented to perform this collective localization
without needing the identities of other robots within the MRS.
This reduces the required communication between robots.2,39

In terms of computational complexity, the optimal solution
to the multi-robot collective localization problem (assuming
only local and relative observations are available) has been
determined to be non-deterministic polynomial-time hard
(NP-hard). As a consequence of this, the problem cannot
be solved by a deterministic algorithm in polynomial time
unless P = NP.40 However, there have been attempts made
to either re-cast the problem in a form that enables a
polynomial-time solution, or to approximate the NP-hard
optimal solution using a polynomial-time algorithm. For the
first case (re-casting the problem), additional constraints

Fig. 13. (Colour online) Images with extracted planar features.25
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on the robot’s relative positions41 and environmental
data utilized42 have successfully reduced computational
complexity. Furthermore, the order of complexity has been
shown to vary depending on the method/assumptions chosen:
an extended Kalman filter may have a cost of O(n3), while
a particle filter may have a cost of O(n).43 For the second
case (approximate solutions), algorithms to approximate the
NP-hard optimal solution include works by Gerkey and
Matarić,44 Lagoudakis et al.45 and Singh et al.46

These three types of localizations are facilitated by
two types of sensors: interoceptive and exteroceptive.
Interoceptive sensors (such as wheel encoders, gyroscopes
and accelerometers) track the motion of an individual robot
on which the sensor is mounted and extrapolates that data
into a path followed by the robot. Exteroceptive sensors
(such as SONAR and cameras) measure and represent the
environment of the robot, including obstacles and other
robots.47,48

For a single robot system, one generalized strategy for
global localization utilizing these two classes of sensors
consists of three steps: pose prediction, local/global map
correlation and pose estimation. Pose prediction uses the
interoceptive information collected by the robot to determine
a change in position in the local map independent of
the environment. Local and global map correlation utilizes
exteroceptive sensors to relate the change in external sensing
to a change in global position. Finally, pose estimation
combines these two determinations to estimate the actual
global localization with better accuracy than either of the
two independent assessments.49

For MRS, different strategies exist for localization in
known and unknown environments. In a known environment,
global localization can be performed by a “leader” robot,
and collective localization is performed on the entire team of
the leader and its “followers.” By simple extrapolation, the
collective localization can be used to globally localize each
follower in relation to its leader.50

In an unknown environment, different applications of
SLAM are needed to create local maps, localize the
robot(s) within those maps on each robot and integrate
those maps and localizations into a global framework.
When communication is limited during this process, the
integration of maps and localizations must be performed
offline after the exploration task is finished, forcing each
robot to perform SLAM independent of one another (though
strategies can be incorporated in the local control laws to
circulate robots throughout the environment). However, if
communication is not a limiting factor, Collective-SLAM
can be performed with each robot providing its sensory data
to a centralized processor to build the global map and localize
each robot within it centrally.50 SLAM is further discussed
in Section 2.5.

2.3.1. Techniques for localization. Dead-reckoning provides
the most intuitive procedure for position estimation. Wheel
rotations are measured using encoders and integrated
over time to determine the trajectory travelled by the
robot. However, due to effects such as wheel slippage, in
applications where the robot is travelling long distances,

the error accumulation, if not compensated for, causes the
position estimate to become useless.51

Non-linear Kalman filtering is the most common way by
which these errors are reduced by coupling this measurement
with others, such a gyroscopes or Global Positioning System
(GPS). The goal of utilizing Kalman filters is to reduce the
noise and other inaccuracies present in sensor values, and to
synergize sensor values to provide the best estimate of the
measured state. Specifically, two types of filters are used:
extended and unscented. Extended Kalman filters propagate
the state covariance associated with the measurement through
a linearized model, while unscented Kalman filters use a
sampling technique known as the unscented transform to
better capture the nonlinearity with an accuracy of the third-
order Taylor expansion.37,43,48

Mathematically, extended Kalman filters in discrete time
require differentiable functions for the state transition and
observation models, as shown in Eq. 1, where xk is the state
estimate vector, uk is the control action vector, zk is the output
vector, f and h are differentiable functions and wk and vk

are the process and observation noises with covariances of
Qk and Rk (note: the subscript denotes the discrete time at
which the variable represents):

xk = f (xk−1, uk−1) + wk−1
(1)

zk = h(xk) + vk.

Using f , an initial prediction of the state estimate x̂k|k−1

based on the state estimate x̂k−1|k−1 and control action uk−1

can be constructed, as shown in Eq. 2. Using this estimate,
the state transition (Fk−1) and observation (Hk) matrix can
be estimated through linearization, taking the Jacobian of the
f and h functions, respectively, as seen in Eq. 3:

x̂k|k−1 = f (x̂k−1|k−1, uk−1), (2)

Fk−1 = ∂ f
∂x

∣∣∣∣
x̂k−1|k−1, uk−1

Hk = ∂h
∂x

∣∣∣∣
x̂k|k−1

. (3)

With the state transition matrix estimate, a prediction of
the estimate of the covariance can be obtained using Eq. 4,

Pk|k−1 = Fk−1 Pk−1|k−1 FT
k−1 + Qk. (4)

After these preliminary predictions and approximations
are made, the state estimate can be updated. First, the residual
difference ỹk and residual covariance Sk are calculated using
the current measured values and the previous predicted state
and covariance estimates, using Eq. 5. Then, a near-optimal
Kalman gain K k is calculated using Eq. 6 to create the
updated state estimate x̂k|k and updated covariance estimate
Pk|k using Eq. 7:

ỹk = zk − h(x̂k|k−1)
(5)

Sk = Hk Pk|k−1 HT
k + Rk,

K k = Pk|k−1 HT
k S−1

k , (6)
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Fig. 14. (Colour online) Odometry-based vs. Kalman filter-based position estimate.48

x̂k|k = x̂k|k−1 + K k ỹk
(7)

Pk|k = (I − K k Hk) Pk|k−1.

In an effort to reduce computational complexity and a
reliance on real-time, high-bandwidth communication, work
has been performed to decentralize the Kalman filter methods
to each individual robot, necessitating communication only
when the robots detect one another.47

Figure 14 shows the difference in position estimate for
uncompensated odometry measurements (green) compared
to two Kalman filter algorithms (black and red).

Kalman filtering is one of the geometry-based localization
methods where geometric measurements are used to
construct the localization scheme. A second geometric
method is least-squares estimation where a robot’s local
feature-based map is analyzed relative to a global feature-
based map, and the current position of the robot in the
local map is extrapolated into the global map by analytically
determining the placement of the local map within the
global map.49 In each geometric method, uncertainty is
modeled through a covariance matrix incorporated into the
analyses. In Kalman filter, linearized state transition and
observation matrices are used to propagate the previous state
and observation covariances forward, coupling them with
estimates of the process and observation noise covariances.
In least-squares estimation, this covariance originates from
the propagation of uncertainties of the pose estimates and the
residual error of the estimate itself to the pose estimate.

Occupancy-based maps can be used in the grid-
based localization methods where the pose (position and
orientation) of a robot within a space is needed. Specifically,

x- and y-histograms are used for pose estimation, while polar
histograms are used in the orientation estimation process.
Each is extracted from the occupancy grid based on the
robot’s sensor measurements.42

Monte-Carlo localization is an alternate approach for
robotic localization, which uses the previous state and
control actions to estimate points comprising the probability
distribution function of each robot’s location within its
environment. Because of the previously stated computational
limitations of deterministic algorithms in solving the
collective localization problem (the problem being NP-hard),
statistical algorithms that include random variables allow for
better solution convergence.24

Markov localization is another class of techniques used in
single and MRS. It is built on the Markov assumption that
future sensor readings are “conditionally independent” of
past sensor readings. The current pose of the robot is stored
as a probability distribution over the possible poses of the
robot. Localization is performed using two models: a motion
model, which utilizes interoceptive sensing to monitor the
robots’ movement, and an observation model, which utilizes
exteroceptive sensing of the robots’ environment.38,52

Mathematically, the Markov localization manifests in the
Bayes filter. For localization, it is desired to determine the
robot’s pose at time t , xt , based on n known environmental
landmarks � = (θ1, . . . , θn) and the control action specified
at time t , ut . This new pose estimate will take the form of
a probability distribution function, p(xt+1|xt , ut ). At each
pose, sensor measurements at time t are taken as zt and
are based on a probability distribution based on the state at
that time, p(zt |xt ). The Bayes filter, shown in Eqs. 8 and
9 determines the probability distributions of the new state
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based on the previous control (Eq. 8) and sensor readings
(Eq. 9),16

p(xt+1|ut ) =
∫

Xt

p(xt+1|xt , ut )p(xt )dxt , (8)

p(xt+1|zt ) = p(zt |xt )p(xt )

p(zt )
. (9)

A specific localization technique incorporating both the
Monte-Carlo and the Markov/Bayesian strategies used
extensively in the literature for localization is particle
filtering. Particle filters have been called “randomized
adaptive grid approximations,” where the values of the
particle change randomly in time, but the weights of each of
these particles is updated at each sequential step, capturing
the deterministic movement of the robot in the environment
and the random noise associated with the measurements of
that motion.31,53,54 Particle filters developed from importance
sampling, which discretizes the probability distribution of
a sample, then corrects the discrete distribution to adjust
the bias due to over- and under-sampled regions. This bias
correction is the importance weight utilized in the particle
filter.55

The Markov assumption is a cornerstone of both Kalman
and particle filters. In each, the Markov assumption manifests
in the determination of the updated state: the next state is
dependent only on the current state, control and noise, and
not the time history propagating back from the present values.

Appearance-based or visual localization utilizes raw
sensor readings and visual maps to compare current readings
to those previously stored to localize the robot with
minimal real-time image processing. In experimentation,
this methodology has been shown to be more robust
to environmental changes, such as lighting intensity or
obstacle placement, because of the holistic approach to
compare images, as opposed to the processing heavy feature-
extraction or filtering operations.56

Ego-centric localization provides a method for determin-
ing collective localization through on-board measurements
at each robot to other robots within the team. These
measurements are stored as probability distributions (due
to the potential for measurement error) and are updated as
robots move about the space. These updates are based upon
the robot’s own subsequent measurements or communicated
measurements from other robots.57

Range-based localization (also known as the Marco Polo
localization) collectively localizes the robotic system by
utilizing relative position measurements based on the delay
in communication between either robots or static markers
within the environment. At each iteration, or “slice,” each
robot or static marker will generate a signal at a known time to
be measured by the robots within the system. The difference
between the time at which the signal was generated and
emitted correlates to the distance between them. While this is
a simple and cost-effective method of localization, it requires
highly reliable synchronization between the system robots’
on-board clocks for precise distance measurements. Typical
signals utilized include sound,58,59 radio60,61 and WiFi.62

Table I. Application of localization techniques.

Technique Local Global Collective

Dead reckoning X
Kalman filtering X X X
Least-squares estimation X
Grid-based X
Monte Carlo X X
Appearance-based X X
Egocentric X
Marco Polo X

Table I shows these localization techniques and the type(s)
of local, global and/or collective localization to which they
have been applied. Kalman filtering is the most flexible due
to its design not simply as a localization technique but also
as a method to reduce noise in measured signals.

2.4. Motion planning
Once a robot is able to understand its environment
through a map and place itself within that map using
localization, motion planning is needed for the robots to
maneuver themselves individually and collectively through
the environment. Motion planning in MRS can be broken
down into three major classes: formation control, interaction
control and coordinated control.

2.4.1. Formation control. The most fundamental form of
motion planning in MRS is formation control, where
the motions of the robots are synchronized to move
together in a desired formation through an environment.
A key goal of this type of control is to minimize the
need for explicit communication between robots, instead
allowing local control laws and sensor readings to drive
robots in formation without extensive need for global state
information. Furthermore, considerations should also be
made for teleoperation of the formation by facilitating simple
and effective human–system interaction.63,64

One of the most common mechanisms for implementing
formation control is leader–follower. In this scheme, a
single robot (designated the leader) follows a predefined
trajectory, generates its own path or is teleoperated. The other
robots in the system (designated the “followers”) are each
programmed to maintain a specific distance and orientation
relative to the leader, creating a formation. While this method
is simple to implement and is highly scalable, its leader is a
single point of failure and is poor at rejecting disturbances.65

A second strategy, virtual structure, generalizes the
formation as a single entity and treats each robot as a point
on that entity. The path of the entire structure is determined
or provided, and the path of each robot is extrapolated from
points on that “rigid-body” motion. While a benefit of this
method is that it simplifies the path planning for a team
of robots into a single formulation (with individual paths
extrapolated from the overall solution), in order to ensure
the structure is preserved as the robots move, global state
knowledge is needed in all of the robots to correct for
any inaccuracies that may occur during operation (slippage,
environmental disturbances etc.).66
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Fig. 15. (Colour online) Time-varying formation change: (a) initial and final configurations, (b) time-varying robotic trajectories.68

Behavior-based methods provide a third alternative,
where different potential behaviors of each robot are pre-
programmed into the controller, and the overall control is
derived by adjusting the weight each behavior is given in
the robot’s controller. A benefit of behavior-based methods
is the high level of decentralization associated with it versus
leader–follower or virtual structure; however, it is difficult
to mathematically model the overall robot behavior based
on the weights, making convergence and/or stability analysis
difficult.67

Synchronous methods, as the name implies, synchronize
the relative motions of member robots as they follow
individualized trajectories. As a consequence, these methods
expand the system’s goal beyond simply lowering each
individual’s trajectory error, but also minimizing an error
metric associated with the accuracy of the formation.68

It is also important to note that within each of these
methods, considerations can be made for time-varying
formations. In leader–follower, this becomes a local action on
each robot by changing the relative distance and orientation
between the leader and each follower. In virtual structure,
this can be captured by deforming (shearing and dilating)
the structure as it translates and rotates through the space. In
behavior-based methods, it is another behavior to add to the
weighted sum. In synchronous methods, the individualized
trajectories can be modified to allow for changing formations,
causing the target for the error metric to change as well.
Figure 15 shows an example of this operational mode, where
robots arranged in an ellipse transition into a rectangular
arrangement.

2.4.2. Interaction control. A second subset of motion control
is interaction control, where robots follow individualized
paths, but also interact with one another. A common situation
in which this occurs is robotic rendezvous. Rendezvous is
when two or more robots must meet at a common point,
particularly in environments without a global map or a point

common to each robot’s local map. Algorithms solving
this problem have been developed, even in cases where
communication between the robots is unavailable .69

Recharging control, also known as frugal feeding, is
similar to rendezvous, but instead of two or more robots
meeting at a single point, one or more agents must visit
(if it/they is/are mobile) or be visited by (if it/they is/are
stationary) each of the other robots in the team in a prescribed
order. The objective of the motion planning optimization
may be to minimize travel time, energy spent or an objective
function weighing the time and energy.70

Beyond the need for robots to physically meet at common
locations within the environment, other constraints can be
placed on the operation of the network, with the need for
control methods to ensure these constraints are met. Line of
sight control is one such example, where the team of robots
must ensure end-to-end connectivity of MRS by sensor
vision. Behavioral methods have been used to implement
this strategy with varying degrees of success.71

2.4.3. Coordination control. A third type of motion planning
is coordinated control, where the robots implicitly interact
through communication, but do not explicitly interact in
the environment. In many cases, this explicit interaction
would be undesirable. One such application is patrolling,
where members of a robotic team circulate through an
environment to detect changes and/or intruders. A key trade-
off in the formation of this class of methods is the desire to
employ efficient methods for intruder detection, while still
incorporating stochastic behavior so that the robots’ behavior
is not entirely predictable by the intruder. A common
mechanism for modeling patrolling behavior is game theory,
where the robots and intruder(s) are the participants in the
game, with the strategy of the intruder to avoid detection and
the strategy of the robots their control system(s).72,73

A second application is complete environmental coverage
control or region filling control, where the team of robots is
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Fig. 16. (Colour online) Potential field-based path planning: (a) potential field of map known ab initio, (b) path generated based on potential
field between two points.78

instructed to visit the entire environment as quickly and/or
efficiently as possible. In this application, it is desirable to
have minimal overlap of the robot’s paths in order to cover
the environment more quickly and efficiently.74–76

2.4.4. Obstacle avoidance. Beyond these three classifica-
tions, there are several other considerations that must be
made when navigating through an environment. One such
consideration is avoiding obstacles. Generally, the goal of
obstacle avoidance is to create an area in the vicinity of
each robot that avoids overlap with environmental obstacle
and other robots to allow it the flexibility to move through
the environment. For example, in non-holonomic robots,
this may be to allow for the robot to effectively turn
without encountering obstacles. However, other solutions for
this problem, such as potential field methods and collision
avoidance functions, have also been studied.64

Potential field methods utilize a potential function to
“push” the paths of robots away from obstacles by modeling
them as repulsors or sources in the field, and “pull” the robot
paths toward goal points by modeling them as attractors
or sinks. While this does provide a simple mechanism for
ensuring obstacle avoidance a priori to the actual exploration,
it causes sub-optimal behavior when the robot is not in
danger of colliding with an obstacle due to the effect the
sources and sinks can have at medium to far distances away
from obstacles.26,77 Figure 16 shows a typical potential field
in a fully mapped environment and its corresponding path
between two points.

Collision avoidance functions are a more local control
method where obstacles are only considered when they are
present within the sensing radius of the robot in danger of
collision. If the corrective action is not sufficient to avoid the
obstacle as soon as it is detected, it is significantly increased
as the robot approaches the obstacle. This type of method is
more effective for maintaining the optimal trajectory unless
there is imminent danger of collision, but it requires more
on-line computation and highly active sensing to detect the
obstacles.64,79

Real-time methods allow an MRS to adapt to a dynamic
environment in which obstacles may be moving along
unknown trajectories. Critical to successful implementation
of this method is for the robotic system to be able to sense
the new obstacles and to leverage that data to optimally adapt

the current motion plan for the robots in the system to avoid
a collision.80

2.5. Simultaneous localization and mapping (SLAM)
In practice, the divisions between mapping, localization
and motion planning are not as clear-cut as the previous
three sections imply. Particularly in unknown environments,
the tasks of localization and mapping become inextricably
coupled, resulting in the need to develop SLAM algorithms
for MRS. For SLAM in MRS, a team of robots is
tasked with utilizing exteroceptive sensors to determine the
placement of obstacles within an environment, storing those
obstacles within local and/or global maps and simultaneously
localizing the robots with respect to their local and/or global
map, and/or one another.

Mapping with external localization, while not precisely
a SLAM methodology, provides a baseline for separating
decoupled mapping and localization from traditional SLAM
techniques. In this method, the external localization may be
provided by an overhead camera or by beacons/reflectors
of known size and location placed within the environment.
While this method is simplistic, its benefit within the
laboratory is its capacity to decouple the mapping operation
from localization, while still reaping the benefits of
localization to study mapping algorithms.15

As in localization, Kalman filters can also be applied to
SLAM to synergize the noisy exteroceptive and interoceptive
sensor readings simultaneously. In essence, this is an
extension of the localization operation, but now the map of
the environment is unknown and the only obstacles for which
exteroceptive sensors can be used to measure distances are
those previously discovered and mapped by the robot.1

Sparse extended information filters are an extension of
Kalman filters, where the information form of the extended
Kalman filter (known as the extended information filter)
is used to reduce the computational time required for
calculation from a quadratic dependence on the number of
features in the map to a constant time independent of feature
count. This feature of quantity independence is achieved
through the approximation of the environment as sparse in the
extended information filter where the environmental factors
that strongly affect the current SLAM estimate are considered
in the estimate instead of the mandatory coupling to all factors
used in the extended Kalman filter.81
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Fig. 17. Evolution of a diffusion map.59

Maximum-likelihood estimation, an extension of expecta-
tion maximization, utilizes a set of observations to compute
the likelihood of each member of a set of pose estimates
and obstacle locations. Mathematically, relationship is
represented by Eq. 10: the conditional probability of a
set of observations M given a set of measurements X is
desired, with this value computed by taking the product
of the conditional probabilities of obtaining an individual
motion observation given an initial robot pose estimate
of xt

i and a final pose estimate of xt
j . This process is

performed among the robots in an MRS, and then numerical
optimization is used to determine the most likely set of poses
and obstacles for the set of available observations. While
this is a robust method for performing SLAM, it suffers
from heavy computational load required to evaluate and
optimize the pose. Moreover, it is sensitive to erroneous
sensor measurements introducing permanent localization
and/or mapping error with few methods to correct for the
error later in the algorithm,2,82,83

P (M|X) =
∏
i,j

P
(
mij |xt

i , xt
j

)
. (10)

Topological SLAM, or T-SLAM, operates entirely within a
topological abstraction of the environment. In Choset et al.,51

a generalized Voronoi graph (GVG) is generated as the robot
moves through the environment, and the robot continually
localizes itself within that graph. A key assumption of
this work is that the robot is able to determine without
any previous state knowledge whether it is in a previously
visited/mapped node through the current sensor readings.
However, in many environments, such as office buildings,
spaces are more homogeneous and repetitive.

Hierarchical SLAM extends the idea of T-SLAM by
utilizing hierarchical maps with topological and geometric
components. A single hierarchical map and two or more
geometric maps are utilized during the SLAM algorithm,
with localization in the hierarchical map used to determine
the geometric maps that correspond to the robot’s location
within the environment. Then localization is performed in
this subset of maps, reducing computational complexity
and improving fidelity in areas where two or more local
geometric maps overlap. Unlike other SLAM algorithms,
this method requires a partial understanding of the layout
of the environment a priori. However, it does provide for
updates to the map as a part of the SLAM procedure.29

Evolutive localization uses a stochastic search method to
determine the best estimate of the localization of the robot
within the map as it is being generated. Interoceptive and

exteroceptive measurements are synthesized in this process,
with localization occurring after discrete motions of the robot
based on the odometric measurements. While mapping is
incorporated as the robot moves through the environment, it
is critically important when cycles are detected and the robot
returns to a previously mapped area.78

2.6. Exploration
While SLAM is a critical aspect of multi-robot functionality,
it does not incorporate the motion planning necessary
to traverse an unknown environment to ensure complete
and efficient mapping, nor does it provide a metric for
assessing the efficiency of mapping an environment. The
combination of SLAM and motion planning is considered
integrated exploration, or simply exploration. Exploration
can be considered for both known environments, where the
goal may be to search for intruders or to monitor change
within the environment, and unknown environments, where
the goal may be to efficiently map the obstacles or find a
target location.

The three primary considerations for an exploration
algorithm are its efficiency, accuracy and adaptability.
Efficiency relates to the algorithm’s capacity for driving
an MRS through the environment as quickly as possible.
Accuracy relates to the algorithm’s capacity for reliably
building an accurate map, and adaptability relates to
the algorithm’s suitability for mapping different types of
unknown environments, such as wide open spaces with sparse
obstacles or cramped offices with limited visibility and little
space for navigating.84

In fully known environments, predefined trajectories
provide a simple mechanism for robotic control where the
trajectory is planned a priori utilizing the known map,
with a goal of either verifying the map or discovering
new information about the environment unrelated to the
arrangement of the environment itself. While the ease of
implementation is a significant benefit, using predefined
trajectories does require full knowledge of a global map
before exploration takes place, and if there is a possibility for
additional unknown obstacles in the environment, obstacle
avoidance methods (Section 2.4.4) must be incorporated into
the robotic controller to reduce the potential for failure.84

Diffusion mapping is an exploration mechanism where
large numbers of simple robots map an environment through
highly redundant localizations and line of sight mappings
throughout. A random-walk-type motion planner is used to
allow the robots to reach every point within the environment,
albeit theoretically and eventually, as shown in Fig. 17. While
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it is a robust and fault-tolerant method, it is highly inefficient
and time-consuming, and any small, uncompensated error
in localization can significantly affect the quality of the
map.59

Greedy mapping methods drive a single robot or members
of an MRS toward the nearest unexplored area within
either local or global maps. While this method is simple
to implement and is inherently decentralized, it does not
account for potential overlap of actions within the MRS.
However, it has been found that while this behavior is
sub-optimal, particularly in MRS, it still accomplishes the
task within a reasonable distance travelled.85 The greedy
mapping strategy has been improved by utilizing an a-
optimal objective function (the sum of the covariance
matrix’s eigenvalues) versus the conventional d-optimal
objective function (the product of the covariance matrix’s
eigenvalues).86

Frontier-based methods drive the MRS members toward
the frontiers of the map between the known and unknown
environmental spaces. The expectation is that if a robot
moves toward the frontier, it will detect new, unexplored
regions of the environment.87,88

Potential field methods in exploration are an implement-
ation of the frontier-based methods and are similar to those
in motion planning/obstacle avoidance. Attractors are added
to the unexplored frontier of the robots’ global map to
encourage robots to move toward unexplored areas and
repulsors are added to each robot to encourage separation of
the group to maximize coverage. Coupled with the previously
discussed repulsors at obstacles, this allows for an effective
strategy designed to pull robots out of previously explored
areas while still preserving an ability to avoid obstacles and
other robots as they are detected.77,88

A challenge in utilizing potential field methods is their
ability to create local minima in which the robot can become
“trapped” either at a single point in the environment or on
a loop circulating through a specific area. Several methods
have been proposed to address this issue. Adding random
walk, as discussed previously, includes a stochastic model
to drive the robot off of its “prescribed” path and avoid
the possibility of becoming trapped. Utilizing artificial
potential field strategies continuously “scan” each robot’s
potential field map for local minima and modify the field
to remove these minima as necessary. Avoiding minima by
adding repulsion actively modifies the potential field as the
robot moves through the explored area of the map, adding
repulsion to previously visited points. Switching to wall
following when the robot detects it is trapped is another easily
implementable and intuitive scheme for escaping minima.88

A potential field can be generated using the extended
Voronoi transform (EVT), and plan paths with this
transformation using the Voronoi fast marching. EVT utilizes
a map (previously generated or in progress) and creates a
grayscale version of the map dark near obstacles. The log of
this map creates a potential field that will drive the robot away
from known obstacles and, by extension, toward unknown
areas.78

Next-best-view methods, first investigated by Connolly in
1985,89 directly utilize two criteria to determine the next
most optimal position for creating a map: the anticipated

information gain at that position and the estimated distance
that point is away from the robot’s current location. In
order to translate this formulation into a workable algorithm,
some form of optimization is needed to optimize the relative
features in determining the optimal point.18

One such optimization scheme is ad-hoc utility function
optimization, where the two features are combined in a
weighted utility function and computed for a set of candidate
points. This value, along with considerations made for its
reachability from the current location, is used to determine
the most optimal of the candidate solutions.90 A second
scheme for optimizing the next target point is multi-objective
optimization, where candidate positions are generated and
the various features are evaluated at each point. Then the
Pareto-optimal candidates are isolated, and the rest discarded.
Among the Pareto-optimal candidates, a metric is then used
to determine the solution that is nearest to the ideal solution
comprising minimal distance from the current location,
maximum information gain and maximum overlap.84

Anchored wanderer methods utilize MRS with members
designated as either the communication anchor or a wanderer.
The anchor remains in its initial location, and the wanderers
explore the space around it one at a time. As each wanderer
moves, it must maintain a line-of-sight directly or indirectly
(through another robot) with the communications anchor.
When this line of sight breaks, an obstacle is known to be
between the anchor and wanderer, and can be incorporated
into the map. The wanderer is then reversed to restore the line-
of-sight, and the next wanderer commences its exploration.

A specialization of this method in environments where
some of its properties are known a priori is the quadrant-
based anchored wanderer. In this method, the environment
is known in terms of four quadrants, and there is a
target point in one of the quadrants to be discovered. The
operation continues as before, but bias is incorporated into
the wanderer’s motion toward the quadrant with the target
point to hasten its discovery.

Sensor-based random tree or graph methods incorporate
a probabilistic or randomized motion planner with a
topological map (called the sensor-based random tree/graph)
capable of storing information at each node such as the
local safe region around that point. The connections between
nodes model navigable paths within the environment, and
the frontiers at the fringes of the graph are preserved at the
boundaries of the local safe regions in relevant nodes. The
motion planner is not entirely random; generally, it is biased
to drive the robots toward the frontier and away from one
another.33,91,92

Cellular decomposition or segmentation methods provide
a mechanism to ensure complete coverage of an environment
by decomposing it into individual cells or segments. During
this operation, the members of the MRS exhibit one of the two
behaviors: global exploration to create the cells or segments,
or cellular exploration to fully explore and map the created
cells/segments individually. An example of a decomposed
environment is shown in Fig. 18. To accomplish this task
with an MRS, control is quasi-decentralized, with the system
broken down into sub-teams tasked with global exploration
or cellular exploration, and communication occurring only
within teams.4,93
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Fig. 18. (Colour online) Cellular decomposition illustration.94

Hill climbing methods map the unknown areas of
environments by utilizing an entropy map with high entropy
in unknown areas and low entropy at mapped areas. The
gradient of this entropy map provides a basis for motion
planning through climbing the “hills” of high entropy. A
hierarchical map is used to map obstacles in an occupancy-
based grid and avoid local minima in a topological map.20

Bidding or free-market methods mimic an auction or an
econometric model to assign tasks to different robots. When
a task is formulated and subdivided into smaller sub-tasks, the
robotic members of the MRS will construct bids for each of
the sub-tasks based on local cost-benefit analyses. Potential
costs include estimated completion time, distance travelled
and/or energy consumed. Potential benefits are generally
limited to various forms of information gain. While localized
“profit” maximization strategies generally provide a high-
efficiency solution, it may lead to sub-optimal solutions,
as seen in Fig. 19. Furthermore, the network topology is
limited due to the need to communicate bids to a centralized
“auctioneer” to assess them and assign tasks.82,95–97

Consensus-based methods strive to formulate a consistent
representation of the environment across all members of
an MRS to allow for localized motion planning based on
the global representation. Once a consistent environment
is available across the MRS, consensus then helps to
coordinate the motion planning strategies to reduce overlap
of information gain. While a specific area of the map
may provide the greatest information gain to all members
of the MRS and going there would maximize each

robot’s potential information gain, in the global sense this
is a sub-optimal behavior. Consensus can also be used
to facilitate bidding/free-market methods in providing a
uniform environmental representation for more consistent
bids across the MRS.98

3. Benefits, challenges and tradeoffs
Patterns of benefits, challenges and tradeoffs begin to
emerge from the analysis of the current methods utilized
in the operation of MRS. The primary trade-off relates
to the use of the system’s members in parallel or
cooperatively. Parallel use implies that each robot performs
tasks individually. However, this does not imply that
tasks are performed independently: communication still
ensures minimal duplication of efforts, unless duplication
is preferable. Cooperative use implies direct physical
interaction between within the workspace, from joining
together to form a superstructure to transporting a load
greater than any individual’s capacity.11

In both situations, MRS inherently benefit from the
concurrent operation of their members and the potential for
specialization facilitated by a distributed system. Concurrent
operation of individual robots (in parallel systems) or MRS
sub-teams (in cooperative systems) speed up the execution
of tasks beyond what any single robot or group of robots
operating independently could perform.87,96 Furthermore,
the utilization of multiple robots in a system allows for
distribution of necessary capabilities for a task among the
robots, thereby creating a team of specialists that each can
perform a single task exceptionally, versus a single generalist
more prone to failure, more constrained in what it can
accomplish and not expert in performing any single task.97

Furthermore, MRS address the issues of reliability through
redundancy of capabilities, reducing the potential effect of
faults on the system. Because MRS can be designed without
single points of mechanical, communicative or control
failure, this increases their reliability. A common method
of eliminating single points of failure is to include redundant
copies of each type of agent within a team.87,96 However,
with certain task redistribution and/or team reorganization
strategies, systems can be scaled down below complete
redundancy. When faults do occur, it is critically important
that they are detected so that the system can compensate. A
central challenge in this endeavor is distinguishing between
faults, which are a systematic failure, and disturbances, which
are unanticipated environmental effects on the system.99

Fig. 19. Local optimality vs. global optimality: (a) locally optimal solution for robot 2 at the expense of robot 1, and (b) optimal solution
to minimize overall travel time.87
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3.1. Decentralization
Decentralization refers to the distribution of computation and
control from a centralized agent or operator to the individual
member of the MRS. Centralized strategies synthesize
readings from robotic agents into a single framework and
determine tasks to be performed by the team. In this situation,
the team is thought of as a single entity with several degrees
of freedom. However, producing optimal solutions for this
“single entity” framework is computationally difficult and
is not scalable. Fully decentralized strategies allow for the
achievement of global goals without explicit communication
among MRS, including efforts such as localization.97,100

Practically, the distinction between centralized and
decentralized control is more analog than digital, with
different strategies incorporating elements of both. One
manner in which this manifests is in how an MRS performs
task allocation and re-allocation. Franchi et al.33 describe
an exploration algorithm where the discovery of new
environments is shared with other robots within a system.
Because these new features are now shared globally, local
algorithms for path planning can be deployed without
needing to coordinate that computation with other robots.
Ghaderi et al.101 investigate how task reallocation must
occur both locally and globally in response to minor and
catastrophic failures within the system.

Research has also been performed to find distributed
algorithms that can mimic a centralized computation with
minimal external communication to each individual robot
from other robots. Roumeliotis and Bekey47 studied the
distributed Kalman filter that would perform filtering on each
robot and would only require inter-robot communication
when localizing with respect to each other. Leung et al.102

considered the problem of collective localization through
global state estimation, with communication only necessary
to compare and correct global state estimates.

3.2. Coordination
Coordination refers to the communicative features of MRS
operation. Two types of data are transmitted through
communication: situational awareness, such as maps or
sensor readings, and control commands, such as planned
trajectories.98 Furthermore, this coordination may either be
(1) passive/implicit, where the robots attempt to influence
one another solely through their actions (which are then
sensed by the other robots), while planning is still performed
independently, or (2) active/explicit, where communication
is utilized during the planning process to communicate
information to implement a global strategy.22,103

Beyond the specific data being communicated, the design
of communication networks directly affects the potential
architecture of an MRS.104 This design comprises direct
communication links between robots96 or multi-hop schemes
where two robots communicate through an intermediary.105

A common but unrealistic assumption for algorithms studied
in simulations or laboratory environments is unlimited
communication bandwidth and perfect synchronization.
However, in practice, there is an inevitable and sometimes
significant delay (particularly when utilizing multi-hop
communication).98

A major trend has been to minimize the need for explicit
communication within the MRS. While it may be simply to
reduce delay, there are some circumstances where explicit
communication may be impossible (due to interference or
environmental obstruction) or pose a risk (such as military
operations).94 Algorithms have been designed to reduce57 or
eliminate94 this need entirely when necessary.

In an effort to improve fault tolerance, considerations must
be made for communication failure. For example, if one robot
is expecting a transmission from another and does not receive
it, the robot should take some alternate action as opposed to
waiting indefinitely. Ideally, the robot would also be able
to alert the other members of the MRS and/or the system
operator of the communication failure to improve system
robustness and allow the fault to be addressed.106

3.3. Cooperation
Cooperation refers to the synergy of decentralization and
coordination in the operation of MRS. This most clearly
applies when addressing the localization problem, where the
control of the system as a whole depends on each robot’s
individual measurements made in real-time. Localization
improves when a variety of different sensor measurements
are included in the localization scheme; MRS cooperation
allows incorporation of locally measured and processed data
for each robot into the localization strategies for other robots,
providing a global benefit based on the distributed processing
of data and internal communication of its information.87,107

Franchi et al.108 provide an example of a strong framework
to encourage cooperation between robotic pieces. In the
beginning of a task, each robot within the MRS has an
individual goal to work toward with understanding of the
other robots’ goals to minimize overlap. Once that individual
goal has been achieved, the robot then cooperates locally with
another robot to help it achieve its goal, and so on until the
overarching task is completed.108

While in most circumstances an increase in the number
of robots in the team increases the effectiveness of the
team, there is a diminishing return associated with adding
additional agents. For example, in an exploration mission,
effectiveness might be reduced in crowded environments
by robots having to take too many detours to avoid other
robots.93 A key challenge in designing an MRS is to find the
optimal type and quantities of robots within the team where
the marginal benefit of any additional piece is not less than
the marginal cost associated with operating it.

Communication and control are also intertwined in the
requirement for many systems that the MRS remains
“connected” either by line of sight constraints or by
maximum relative distances. This connectivity, often
necessary for communication, requires a control-based
solution that must be continuously considered during motion
planning for the MRS.105

3.4. Localization accuracy versus area coverage
In exploration activities, there is a central tradeoff that
dominates the performance of a system: the tendency for
localization accuracy to decrease as the rate of area coverage
increases, and vice versa. This inverse relationship can be
classified in a tradeoff of two different types of information

http://journals.cambridge.org


http://journals.cambridge.org

16 Mapping, localization and motion planning in mobile MRS

gain for the system: the gain of continuous information about
the state of the system as estimated by its localization scheme
versus the gain of discrete information about the environment
in which it operates.14 One manner in which this has been
addressed is through the use of “sentry” robots that either
remain stationary109 or move with the system59 with the
sole purpose of observing the other members of the MRS
to localize them more effectively.

Efforts have also been made to control the relative weight
given to localization and coverage considerations within the
algorithm itself. This allows the system or operator to choose
when fidelity of location is more or less important than rapid
deployment and coverage.88

3.5. Additional challenges
At a high level of abstraction, there is a need to communicate
the desired behavior or task to an MRS. There are two
fundamental approaches to accomplish this goal: bottom-up
or top-down. Bottom-up approaches utilize local interactions
between robots to create global behaviors of the system. The
operator customizes a controller’s methods and parameters
to break down the task among robots and determine their
modes of interaction. Alternatively, top-down approaches
directly communicate these goals to the MRS and allow
for an automatic process to determine the necessary
communication protocols and feedback controllers based
on the electromechanical architecture of the MRS. While
the bottom-up approach is significantly more common than
top-down, top-down has the potential to revolutionize the
approach to address MRS control strategies through the
capacity to pose more rich global problems to the system.110

At a lower level of abstraction, the generation of state
estimates is tightly coupled to control of the MRS at
local and global levels, with consideration of this coupling
greatly improving both estimate and control. For example,
in exploration, the most optimal path in terms of travelling
distance may be through a large area of open space without
obstacles. However, without external obstacles to be included
in the localization estimate, the localization error will
increase – hardly an optimal behavior in a broader sense.
Therefore, it may be more desirable to track closer to walls
or other obstacles to retain strong localization, which will
ultimately assist future control via the motion planning
algorithm.22

Furthermore, while local map overlap has been treated
as a universal negative throughout various considerations of
efficiency, for many MRS, a certain amount of overlap is
necessary and desirable. When local maps overlap with one
another or with the global map, their correspondence for
merging becomes more robust than if relative measurement
data were to be used alone to position the maps in the global
space.84,88

A common issue within the literature is the focus on
robust and novel algorithms solely applicable in laboratory
environments with over idealized conditions. For example,
in most maps there is an absolute distinction between
spaced blocked by an obstacle and clear space. However,
in many environments it is common for obstacles to be
deformable (e.g. curtains/bushes/branches) or movable (e.g.
doors/boxes/rocks). If these algorithms had a mechanism for

Fig. 20. (Colour online) Sensor interference: (a) oblique reflection,
(b) high-order reflection and (c) cross-talk.83

detecting potentially deformable or movable objects (through
observation or autonomous experimentation), they would
provide drastically improved capabilities.111

Furthermore, within the field of MRS, there is a tendency
to model robots either as purely holonomic or to use a
single non-holonomic robotic architecture for the entire team.
However, to fully attain the benefits of MRS, there must be
a capacity to use robots within a system with drastically
different architectures and locomotive capabilities.112,113

When utilizing MRS, the potential for interference
between the robots should not be overlooked. In its simplest
manifestation, this interference may be from too many robots
trying to navigate a small subset of an environment with
many obstacles.87 However, in terms of sensors, interference
can also occur due to unintended environmental effects on
how the sensor operates. For example, Fig. 20 shows three
types of sensor interferences possible with sonar sensors:
in Fig 20(a), an obstacle is not detected because the sonar
wave did not reflect back directly to the sensor; in Fig 20(b),
the distance to the obstacle is overestimated because of the
indirect path taken by the wave and in Fig 20(c), cross-talk
between sensor occurs because one sensor is detecting the
wave generated by the second sensor. Cross-talk can then be
extrapolated beyond two sensors on the same robot to a robot
in the line-of-sight of the sensor.83,87

Beyond any internal considerations, a significant challenge
in utilizing MRS in real-world, real-time applications is
the manner in which they interface with operators. As
discussed previously, systems are often designed bottom-
up with pre-programmed strategies for operation in a variety
of circumstances. However, in many mobile applications of
mobile robots, there is a strong desire and/or requirement
to incorporate an operator “in the loop” to monitor the
system’s behavior and correct for undesirable action, or to
supplement the autonomous function with actions that could
not be pre-programmed. The key challenge is facilitating this
relationship in simple and intuitive ways for the operator to
reduce the potential for failure due to preventable causes.27

The relationship between scalability of systems and
their operation is another challenge: In systems with more
than two or three robots, a single operator cannot be
expected to monitor each during a mission, and the use
of multiple operators complicates operation. Strategies are
needed to preserve the benefits of teleoperation in large-
scale systems while still providing the necessary oversight
over their operation.114 Furthermore, research in bilateral
control with allowances made for delay has also been

http://journals.cambridge.org


http://journals.cambridge.org

Mapping, localization and motion planning in mobile MRS 17

attempted to better mimic real-world operating conditions
and allowing for stable and robust operation when these
bilateral considerations are made.64

4. Practical Implementation
Beyond the desire for researchers to push the boundary of
scientific knowledge, there are numerous applications of
MRS research in both specialized sectors and everyday life.
Examples of these applications, which have seen serious
consideration in the literature, are presented in Section 4.1.
Section 4.2 describes sensor technologies commonly utilized
to instrument MRS for tracking position and orientation.

4.1. Fields of application
Search and rescue is a commonly addressed application
area of MRS due to the ease in which the problem can
be posed to a robotic system, the ease with which MRS
can scale to provide additional units to improve search
speed and accuracy and the potential harm associated with
human participation in search and rescue in some scenarios
(e.g. collapsed building, inclement weather etc.). Searching
has been categorized into three types: efficient, guaranteed
and constrained. Efficient search attempts to locate a non-
adversarial agent within the environment in the minimal
time by covering maximum area as quickly as possible.
Guaranteed search attempts to locate a target (adversarial
or not) by ensuring evasion is impossible as MRS traverses
the environment. Constrained search imposes one or more
conditions on efficient or guaranteed search strategies such
as a maximum relative distance between agents or line-of-
sight restrictions.22,115

Military and police operations benefit from many of the
same factors as search and rescue when applying MRS,
such as relative ease of posing problems and the reduction
of human harm. Furthermore, utilizing robots can reduce
the need for humans to perform tedious and uninteresting
tasks by automating those processes, similar to how
fixed robots have revolutionized manufacturing. Intruder
detection/surveillance/patrolling is an example of this, where
robots utilize maps to plan routes to intercept intruding agents
within an environment. Strategies generally incorporate
optimal coverage algorithms to maximize efficiency coupled
with random walk elements to increase unpredictability of the
team. The adversary’s motion relative to MRS itself has also
been considered through techniques such as game theory to
better plan the robots’ strategy. Guaranteed search strategies
can also be used to “trap” intruders in environments as robots
patrol.72,73,100

Other examples of military and police operations include
reconnaissance and biohazard discovery. Reconnaissance
consists of a group of small robots covertly navigating
an environment to gain sensory information from that
environment. Reconnaissance benefits from utilizing MRS
because of the redundancy associated with using multiple
agents in parallel on the same task; if a robot fails, the entire
mission is not jeopardized.116 Biohazard discovery utilizes
robots to explore buildings in which there are suspected
biohazards and remove/neutralize any that are discovered.
The reduction in potential harm to humans whom otherwise

would have to execute this task is obvious, but MRS can also
be outfitted with a suite of different sensors and actuators to
better detect hazards than could be done by a human, even
with portable instrumentation, due to automated processing
and categorizing of sensor data.117

Planetary exploration refers to the search of unknown
environments with extreme environmental conditions for
specific items or features. This classification may refer not
only to exploration of other planets and objects in space but
also to certain areas of Earth. One such location is Antarctica,
where robots have been used to search for and classify
meteorites. Use of MRS to accomplish this goal promises to
significantly expedite the process in terms of area covered as
well as reduce the extent to which humans must be involved
in the process.118

Mobile sensor networks allow MRS to be utilized to
monitor an environment for a variety of properties, from
electromagnetic fields119 to the presence of oil in a body
of water.120 The capacity of MRS to dynamically measure
these properties in multiple time-varying locations allows
for dynamic correction of deficiencies. For example, sensor
networks that monitor wireless signal strength could deploy
mobile wireless “hotspots” to correct for any deficiencies,
or sensor networks that monitor oil spill intensity can alert
cleaning crews to the areas affected the most by the spill.120

Load transport is a natural extension of single-robotic load
transport; however, the collective capacity of MRS provides
greater flexibility in terms of the magnitude of load itself
and its geometry. In addition, MRS systems allow higher
fault tolerance during the transport operation; if one of the
robots fails, the others may be able to compensate for that
failure by redistributing the load. However, load transport is
a highly cooperative task, with fast and efficient real-time
control necessary to ensure sufficient force on the load to
keep it lifted and stable as the system moves.10,101,121

Service robotics incorporates a broad category of
applications aimed at improving society by automating or
simplifying assistive actions. An example can be seen in
robotic mowing and floor cleaning. In both, the member(s)
of an MRS must visit each location within an environment
at least once with no margin for error. To facilitate use
by the greater public, this needs to be accomplished with
minimal input from an operator. A challenge prevalent in
these types of operations is the dynamic environment such
that people may be moving around the house or yard as it
is cleaned/mowed. As the robots traverse the environment,
they must constantly sense for obstacles, even in previously
covered/mapped areas, and in cases where previous obstacles
disappear, ensure that area is cleaned or mowed.75,122

Large-scale assembly and construction tasks of structures,
such as terrestrial buildings or planetary habitats, benefit from
the flexibility in designing heterogeneous MRS with agents
capable of performing specific tasks in the execution of the
operator’s goals. In order to perform these actions, the system
needs both high load capacity for moving and dexterous
control over materials for placing and connecting them.7

Mine explorations allow an MRS to explore an abandoned
and/or potentially dangerous mine without risk to human life.
A key challenge in exploring mines is the lack of GPS data for
localization, requiring reliance on intero- and exteroceptive
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Table II. Benefits and shortcomings of current sensing technologies.

Sensor Benefits Shortcomings

Encoders124 • Often already included in system for motor
control.

• Position prone to drift due to accumulated
errors in kinematic model parameters or
wheel slip.

• Simple transformation to determine
position/orientation from axis rotations.

• Velocity determination requires numerical
differentiation that introduces additional
noise.

Inertial navigation system125,126 • Provides both position and orientation
measurements.

• Position determination with second-order
integral highly prone to drift.

• Integrated gravity/magnetic compass
stabilize orientation calculation.

• Accurate initial position needed to know
absolute position in environment.

GPS50,126 • Provides absolute position with a known
margin of error.

• Not available indoors/underwater/in confined
spaces.

• Not subject to error accumulation over time. • Subject to RF interference.
SONAR/ultrasonic127,128 • Provides a scalar distance measurement from

the sensor to object.
• Subject to interference if multiple sensors are

used simultaneously.
• Signal easily manipulated to provide

omnidirectional sensing.
• Reflection of signal wave dependent on

obstacle surface material/orientation.
Laser scanner/range finder129 • Similar to, but more accurate than,

SONAR/ultrasonic sensors.
• Highly dependent on reflectivity of obstacles.

• May utilize a variety of techniques to
determine distance – time-of-flight,
interferometry etc.

• Minimum and maximum sensing distances
limit operational flexibility.

• May return the distance to a single point
(rangefinder) or an array of distances
(scanner).

Optical camera130 • Images store a large amount of information
for use by system.

• Image-processing and data-extraction
techniques.

• 3D maps may be extracted from multiple 2D
images using stereovision.

• High computational cost to post-process
images limits response time.

sensing for SLAM operation. However, unlike other indoor
applications without GPS, mines are less distinct in their
features for accurate localization. Collaborative localization
allows for greater localization accuracy by increasing the
sensor data available for the SLAM algorithm.123

4.2. Sensor technologies
While technologies utilized with specific techniques have
been discussed throughout the review, it is helpful to
consolidate the information to compare the benefits and
shortcomings of various technologies. Table II summarizes
the six most common methods used to instrument MRS
for system localization, SLAM and integrated exploration
(among other operations), and present benefits and
shortcomings of each. These do not include application-
specific sensors that vary depending on the desired
system capabilities (e.g. radiation sensors for nuclear plant
maintenance).

Encoders measure shaft rotation within the robot, which is
then correlated to the distance moved by each wheel/track
and in turn the motion of the robot. Inertial navigation
systems utilize three-axis accelerometers and rate gyroscopes
to estimate a robot’s position and orientation by integrating
the acceleration/angular velocities. GPS utilizes signals from
orbiting satellites to trilaterate the robot’s position based
on the calculated distance to each satellite. SONAR and
ultrasonic sensors utilize sonic/ultrasonic longitudinal waves
to measure the distance to obstacles or between robots by

measuring the time-of-flight of the wave from emission
to detection. Laser scanners/rangefinders operate similarly
to SONAR/ultrasonic sensors, but utilize lasers as the
signal and may utilize additional benefits of electromagnetic
waves (phase shift, interference etc.) to extract additional
information about the obstacle. Furthermore, laser-based
sensors may return a pointwise distance (rangefinder) or an
array of distances resulting in a 3D map (scanner). Optical
cameras generate 2D images for processing by the robot to
extract information about the environment.

5. Conclusion
This paper provided a review of the methods, benefits,
challenges, tradeoffs and applications of utilizing MRS.
Based on the reviewed literature, several areas of
improvement for future work exist for current shortcomings
in the literature.

On a high level, few considerations have been made
to consider the selection of members of MRS “teams” to
accomplish a task. Currently, an ad hoc approach is applied
to either adapt a team for which architecture and control
have already been established or to custom-design a team
suited specifically for a task. If a more unified framework was
developed to analyze tasks, it is possible that a team could
self-select its own members to accomplish it. Furthermore,
in order to allow the greatest flexibility when designing a
team, more consideration needs to be placed on the design of
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control and cooperation strategies for robots with drastically
different architectures and types of holonomic constraints.
While research has been performed on the consideration of
MRS each with the same non-holonomic constraint, little
has been performed in integrating robots with different non-
holonomic constraints with one another of other holonomic
robots.

Beyond the internal considerations of communication
and coordination, the current research is relatively sparse
in terms of analyzing dynamic environments compared
with static environments. While static environments do
simplify the process of analyzing a proposed SLAM
algorithm or improvements to an exploration strategy, these
oversimplifications do not allow the research to be translated
to real-world use. A greater focus on research in the vein of
Vannoy and Xiao’s work80 on Real-Time Adaptive Motion
planning is needed, but with greater emphasis on mapping
and localization actions. Furthermore, a critical consideration
in addressing dynamic environments is recognizing humans
within either previously unmapped (so they are not included
in the map being generated) or mapped (to detect intruders)
environments. The concerns related to human interaction
extend beyond the consideration of humans as obstacles or
targets; there is also a significant need to improve research in
how operators can best control MRS. While MRS are being
designed and scaled with members numbering from two to
2000, minimal work has been done on the approaches for
humans to interact with these systems as they scale with
varying levels of autonomy and capability. Even with the
most advanced and capable system, if it is not designed
with human operation as a critical constraint, it will be
significantly less effective.
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