
https://doi.org/10.1007/s10846-018-0851-3

Physics Based Path Planning for Autonomous Tracked Vehicle
in Challenging Terrain

Bijo Sebastian1 · Pinhas Ben-Tzvi1

Received: 10 January 2018 / Accepted: 17 April 2018
© Springer Science+Business Media B.V., part of Springer Nature 2018

Abstract
This paper describes a novel physics-based path planning architecture for autonomous navigation of tracked vehicles in
rough terrain conditions. Unlike conventional path planning applications for smooth and structured environments, factors
such as slip, slope of the terrain, robot actuator limitations, and dynamics of robot terrain interactions must be considered
for rough terrain applications. The proposed path planning method consists of a hybrid planner/simulator, which takes into
account all of the above factors by simulating the closed loop motion of the robot with a low-level controller on a realistic
terrain model inside a physics engine. Once a feasible path to the goal is obtained, the same low-level closed loop controller
is then used to execute the proposed path on the actual robot. The proposed architecture uses the D* Lite algorithm working
on a 2D grid representation of the terrain as the high-level planner, Bullet as the physics engine and a hybrid automaton as the
low-level closed loop controller. The proposed method is validated both in simulation and through experiments. Inferences
based on the results from simulations and experiments show that the proposed planner is more effective in providing an
optimal feasible path as compared to existing methodologies, demonstrating clear advantages for rough, unstructured terrain
planning. Based on the results, possible improvements to the method are proposed for future work.

Keywords Motion planning · Mobile robot navigation · Rough terrain · Tracked vehicle · Physics engine ·
Hybrid automaton controller

1 Introduction

Tracked vehicles were first created to facilitate navigation
over a variety of ground conditions such as snow, loose
sand, mud, steep slopes, terrain cluttered with rubble or
any combination of these (from here on referred to as
rough terrain) that is otherwise not feasible for conventional
wheeled vehicles. Such vehicles are often the best choice
for applications such as hauling heavy military equipment
or agricultural operations that require a significant amount
of traction. The superiority of tracked locomotion over
wheeled systems in such scenarios is due to its increased
traction and comparatively lower ground pressure. Based on

Electronic supplementary material The online version of
this article (https://doi.org/10.1007/s10846-018-0851-3) contains
supplementary material, which is available to authorized users.

� Pinhas Ben-Tzvi
bentzvi@vt.edu

1 Robotics and Mechatronics Lab, Mechanical Engineering
Department, Virginia Tech, Blacksburg, VA 24061, USA

the above factors, tracked locomotion is often considered
best suited for search and rescue applications [1] where
terrain conditions are often treacherous and the environment
very unstable. This is demonstrated in practice as well, as
the majority of the search and rescue robots that have been
deployed in the field over the past few decades use tracks as
their primary method of locomotion [2–5].

Among other factors, an increased level of autonomy
is one of the major requirements for a search and rescue
platform. The ensuing conditions following natural or
manmade disasters often involve poor communication
channels between the affected region and the outside world,
with limited bandwidth and increased latency. The use of
tethered rescue systems in the past, allowing for a robust
communication channel, has had varying degrees of success
[6–9]. Unfortunately, the use of a tether limited the mobility
of the robots and introduced the risk of the tether becoming
stuck in the rubble. Owing to the critical nature of rescue
missions, remote operation of a rescue robotic system in
an unstructured volatile environment is a challenging task,
even with a communication tether. This drives the need for
higher-level autonomy in rescue robots, such as the ability

Journal of Intelligent & Robotic Systems (2019) 95: –1 551 26

/ Published online: 27 April 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-018-0851-3&domain=pdf
http://orcid.org/0000-0002-9452-482X
https://doi.org/10.1007/s10846-018-0851-3
mailto: bentzvi@vt.edu

to navigate on their own over challenging terrain conditions
in a reliable manner. The recent call by the US Army
[10, 11] for unmanned casualty evacuation platforms and
the introduction of CasEvac/MedEvac scenarios in robotic
benchmarking competitions like El-Rob [5] reinforce the
growing need for such autonomous systems.

Determining a feasible path that will take the robot from
the starting point to a goal location is the first step towards
successful autonomous navigation. Much of the existing
research towards autonomous ground robotic systems has
focused on wheeled mobile robots navigating flat structured
terrain conditions, mostly in indoor or urban scenarios [12,
13]. Reliable autonomy in challenging terrain conditions
remains an open research problem. The two distinguishing
factors that make rough terrain autonomy significantly more
difficult as compared to flat/structured terrain autonomy are
listed below:

1. Characteristics of terrain: For a structured terrain, a 2D
occupancy grid is sufficient to plan an optimal path,
but even obstacle free regions with significant slip or
sinkage can prevent the robot from making progress
in rough terrain. For challenging terrain conditions, it
is not enough to have a 2D map of the environment.
Additional factors including terrain topology, variations
in slip due to changing soil makeup and terrain stability
conditions need to considered in order to plan a
feasible path. Terrain topology refers to the shapes and
features that describe the three-dimensional nature of
the surface. In this work, a 3D elevation map is used to
represent terrain topology.

2. Characteristics of the vehicle: In the case of robots that
are designed specifically for rough terrain locomotion
such as SOLERO [14], the JPL Sojourner Rover [15],
or hybrid tracked-wheeled multi-directional mobile
robot like STORM [16] and HMMR [17], the vehicle
characteristics need to be taken into consideration
for planning. The simplest approach of assuming any
terrain feature with an elevation above a threshold value
is an obstacle results in an excessively conservative
approach for tracked robots. Classifying terrain into
traversable and non-traversable regions based on
additional factors such as inclination, coefficient of
friction and climbing performance of the vehicle must
be performed in order to take full advantage of the
vehicles’ capabilities. Simultaneously, the dynamics of
the vehicle must also be taken into account in order
to prevent tipping while performing any traversing or
climbing maneuvers.

In summary, the path planning algorithms need to take into
account the dynamic interactions between the robot and the
terrain in detail in order to achieve reliable path planning.
For a robotic system trying to navigate in previously

unseen terrain, this requires continuous estimation of terrain
properties such as topology and slip while progressively
exploring the terrain and updating the map. All of this
should be performed while keeping in mind the limited
computational power available onboard.

In this paper, we propose a novel effective path planning
strategy that takes into account the above-mentioned
requirements. For the purpose of this paper, we will not
be discussing the pose estimation problem; instead, we will
assume that the robot knows its pose information in 6D.
Section 2 will provide a survey of existing path planning
methods, especially for rough terrain applications. Section 3
will outline the methodology proposed and discuss in
detail the various elements of the proposed path planning
architecture. Section 4 talks about the simulations with a
detailed discussion on the results. Section 5 includes the
experimental setup, with results and inferences. Section 6
concludes the paper with directions for future research.

2 Literature Review

Robot path planning is a very well researched field, where
many algorithms with specific advantages for a variety
of applications have been proposed over the last few
decades. A survey of recent advances in the domain of path
planning techniques can be found in [12]. One of the major
events that resulted in significant advances in autonomous
vehicle research was the DARPA Grand Challenge (DGC)
series in 2004 and 2005 [18–21]. The challenges focused
for the most part on cars traversing “largely uniform
and unchallenging” terrain, as mentioned in [22]. While
the path planning strategies used by some of the teams
considered terrain information, advanced vehicle dynamics
were mostly ignored. Much of the self-driving car research
that has followed draws on the foundation provided by the
DGC, yet these are mostly targeted towards flat/structured
terrain motion, even when focused towards driving in off-
road conditions [23, 24].

Rough terrain path planning, as mentioned above,
requires a more serious consideration of the robot and
terrain characteristics as compared to general 3D (x,y,θ)

planar robot path planning [13, 25–27]. The majority of
the strategies for rough terrain use terrain maps classified
into “occupied” and “unoccupied “cells based on the
presence or absence of certain terrain features characteristic
of the problem at hand. The work presented in [28]
presents a method for estimating traversibility of unknown
terrain using 3D vision sensors. The paper describes an
Unevenness Point Descriptor, computed from point cloud
normal vectors with Principal Component Analysis (PCA).
It shows good performance in terms of ground detection but
the effectiveness of the same in robot path planning has not

51 J Intell Robot Syst (2019) 95: –151 5262

been demonstrated. On a similar note, [29] has proposed a
method to estimate roughness of the terrain using normal
vector deviation based on data obtained from a 3D LIDAR.
The terrain roughness information is then integrated into
a Traversable Region Model, which uses a 2D Voronoi-
based map to segment XY region into cells and then assigns
terrain traversibility based on roughness and slope as the
cost of each cell. Others have used a terrain height map as
obtained from 3D LIDAR, stereo Vision or structured light
sensors to compute some form of terrain characterization
based on slope, roughness and slip parameters. The above
information is then used to compute artificial potential fields
in order to determine the optimal path for the robot [30–33]
. For instance, [32] has focused on casting the feasibility
and cost of robot motion over a terrain as an optimization
problem. They used the height map of the terrain along with
a Fast Marching Method in order to come up with a potential
field free of local minima. Using state lattice planner with
primitive trajectories for path planning of a large tracked
vehicle in open terrain is mentioned in [34]. However, the
work assumes the terrain is assumed to be open and no
consideration is provided for any terrain features like slope
or actuator limitations of the robot. This allows the planner
to assume that the robot is capable of executing the primitive
trajectories at all times and is therefore not applicable to the
challenges being addressed in this paper. Approaches that
involve finding the smoothest path in a given terrain map or
looking for the minimum artificial potential energy assume
that the path with these characteristics to easily traversable.
As mentioned previously, smoothness of a terrain does not
always relate to traversibility, especially in the presence
of loose sand, ice, or mud. In other cases, looking for the
smoothest terrain might prove to be a conservative approach
as this ignores the ability of the platform to traverse
challenging terrain as offered by its mechanical design.

The one common drawback of the above approaches is
not taking into account the dynamics of the robot. Even
though terrain topology plays a major role, ignoring or
simplifying the dynamics of the vehicle and its actuator
limitations can lead to failure of the planner through
collision or the vehicle’s inability to execute the planned
maneuvers. In contrast with the above approaches, [35–38]
have used a simplified dynamic model of the vehicle along
with the terrain elevation map to ensure that the vehicle does
not tip over while traveling the path provided by the planner.
Another similar work, [39], used a simplified model of the
vehicle and terrain to check for stability at intermediate
waypoints along the proposed path. Recent work by Currier
and Wicks [18] proposed analytical methods for real-
time estimation of Instantaneous Maneuvering Manifolds
for large autonomous vehicles in order to predict their
allowable dynamic operating ranges. Their method takes
into consideration the uncertain and dynamic nature of

payloads on autonomous vehicles as well as the varying
frictional coefficient of the terrain, as applied to Ackerman
steered vehicles. A two phase rough terrain path planning
for actively reconfigurable robots is proposed in [40]. An
initial path is obtained from a graph search, followed by
identifying the rough regions on the path using vision data.
Biased RRT* in the continuous state space of the robot is
then used to refine the path on the rough regions, thereby
taking into account the actuator limitations on the robot.

Another major factor to be taken into account for rough
terrain path planning is terrain slip. Existing methods [14,
39] handle slip by means of robust trajectory tracking
controllers while executing the planned trajectory. However,
the above-mentioned approaches do not consider terrain slip
during the planning stage. This is an inefficient strategy, as
there will be cases where the robot cannot go over a slope or
travel along the sides of a ravine due to significant slip. The
planner then provides an un-traversable path that can result
in failure, as even the best trajectory-tracking controller
cannot overcome such significant slip events.

In summary, inaccuracies and simplifications in model-
ing the robot-terrain interactions lead to cases in which the
feasible path reported by the planner results in collisions in
the real world, or the robot not being able to execute the path
at all. While some of the existing works may incorporate
one or two of the above-mentioned factors during the plan-
ning stage, there exists no comprehensive solution to this
problem.

3 ProposedMethod

In order to meet the requirements as discussed above, we
propose novel path planning architecture that consists of
a high-level planner that takes into account the dynamic
robot-terrain interactions by simulating closed loop motion
of the robot with a low-level controller on a realistic terrain
model inside a physics engine. Once a feasible path to
goal is obtained, the same low-level controller is used
to execute the proposed path on the actual robot. The
overall working of the proposed planner can be explained
as follows: The high-level planner starts with a 2D grid
map of the region in which the terrain topology is initially
flat. The robot then obtains information about the nearby
static obstacles using onboard sensors such as LIDAR, and
updates the 2D occupancy grid to include them. In addition,
the robot obtains the terrain topology for the robot’s current
position and nearby cells (at minimum the immediate eight
neighboring cells). Once this information is obtained, for
every obstacle-free neighboring cell that the robot can move
into, the feasibility of the path is further validated using
the physics engine to account for the dynamics of the
robot-terrain interactions.

J Intell Robot Syst (2019) 95: –151 526 513

The physics engine realistically models the terrain
topology and the actuator limitations of the physical robot.
The simulated robot inside the physics engine is directed to
travel from the current location to the desired neighboring
cell by means of the closed loop low-level controller. If the
simulated robot successfully travels to the neighboring cell,
the cost of the cell can be kept as a tunable combination
of time taken and expended control effort. If the robot is
not able to travel to the neighboring cell within a specified
period, that neighboring cell is marked as unreachable.
This can occur due to terrain conditions, obstacles, robot
dynamics, or actuation limits of the robot. The simulated
feasibility of motion is checked only for cells that already
have a 3D terrain map generated, using the information
obtained from the actual robot. For any cells that does not
yet have this information, the high-level planner assumes the
motion is feasible. This allows the system to come up with
an initial path to goal extending beyond the range of the real
robot’s sensors.

Based on the results from the physics engine, the initial
path generated by the high-level planner is passed to
the physical robot as a list of waypoints. The low-level
controller running on the physical robot then guides it to the
next waypoint (local goal), based on the current position.
Once the robot moves to the next waypoint within the
vicinity of previously unexplored cells, it collects more
sensory data. The updated sensor information is passed
to the high-level planner, which then replans if necessary
and outputs the new path. This process is iterated until the
physical robot arrives at the goal or determines there is no
path available. A block diagram and flow chart explaining
the working of the proposed method is shown in Figs. 1
and 2 respectively. A major advantage of this method is that
only intermediate goals are passed on to the physical robot,
rather than the actual actuator commands. This allows the
low-level controller onboard to inherently correct for any
deviations in the mass, inertia or other physical parameters

between the physical robot and the simulated robot, thereby
providing a better guarantee of reaching the goal location
without colliding with obstacles.

3.1 Novelty of the Proposed Approach

The major contribution of this paper is the introduction of
the use of physics engines for state expansion of a mobile
robotic system in a high-level planner. Following that
explanation, the paper describes how to create a complete
architecture for the autonomous navigation of a ground
robot in rough terrain. In addition to the high-level planner
and the physics engine, the proposed navigation architecture
uses an additional low-level controller to execute the path
proposed by planner on the physical robot. The use of a
physics engine to handle the kino-dynamic aspects of the
planning such as actuator limitations, slip and other terrain
conditions allows the planner to come up with reliable paths
while keeping the computational complexity low enough for
real-time operation. In addition, the ability of the physics
engine to simulate the motion of the robot under the
action of the low-level controller on the simulated terrain
allows the planner to take into account the effects of the
hybrid controller on the motion of the robot. All of these
factors demonstrate improvements on the existing work in
this domain.

The use of D* Lite as the high-level planner and the
hybrid automaton as the low-level controller demonstrates
the approach towards creating a full navigation architecture
and to demonstrate its effectiveness. As described in
Section 3.4, these individual elements of the architecture
can be replaced with others depending upon the application
at hand, while still maintaining the overall structure and
its advantages. The simulations and experiments detailed
in Sections 4 and 5 clearly validate the capability of
the proposed approach in meeting all of the requirements
described in the introduction. While there exists works that

Fig. 1 Block diagram
representation of the proposed
planner

J Intell Robot Syst (2019) 95: –151 526514

Fig. 2 Flow chart showing the working of the proposed planning algorithm

can handle one or more of the above-mentioned factors,
there does not exist a method to the author’s knowledge that
can handle all of the above in a generalized manner.

3.2 High-level Planner

Previous approaches in path planning for robotic systems
with complex dynamics, significant drift, and limited sens-
ing mostly relied on kino-dynamic versions of stochastic
methods like RRT, RRT*, or its variants [41–45]. The gen-
eral approach when utilizing kino-dynamic RRT* is to
plan in higher dimensional state space, where the planner
randomly samples states, followed by either explicitly cal-
culating or randomly guessing actions that will take the
robot from the current state to the target state. Once a fea-
sible path is calculated from start state to the goal state, the
corresponding set of actions is then performed by the robot

in the physical space. The success of these methods thereby
strongly depends on the accuracy of the modelling. The
presence of significant un-modeled dynamics can result in
the robot being unable to reach the goal. However, perform-
ing such random sampling while using a physics engine in
order to expand the states leads to high computational cost.
This makes the approach unsuitable for real-time planning
in dynamic environments.

Since the current application is focused towards motion
planning in a previously unseen environment, a more
appropriate high-level planner is D* Lite, due to its efficient
re-planning capabilities that allow it to handle changes in
the environment [46]. D* Lite is more computationally
efficient when compared to repeated A*, while being easier
to implement as compared to original D* [47]. As a grid
based planner, D* Lite is made to work on the discretized
work space (x, y plane in this case) rather than in the higher
dimensional discretized state space (x, y, φ, ẋ, ẏ, φ̇), while
using the Euclidean distance from the goal as a heuristic.
The total length of the path taken by the robot from start to
goal is the cost function. In order to reduce complexity, the
grid-based algorithm utilizes a robot model that can move
from any given cell to the eight neighboring cells, provided
the neighboring cell does not have an obstacle in it. The
high-level planner is initialized with a uniformly discretized
2D model of the environment (occupancy grid), with all
unknown edge costs set to minimum value. This allows it
to develop initial guesses on the path to the goal without
having the full terrain map to begin with.

3.3 Kino-dynamic Aspect of Planning

In the case of robotic systems with complicated dynam-
ics involving non-holonomic constraints, finding a feasible
trajectory between the initial and final/desired states is a
non-trivial problem. This is particularly true with systems
involving significant interaction with the working envi-
ronment, such as walking robots, dexterous manipulation
and tracked vehicles of significant mass traversing through
rough terrain while under the action of a low-level feedback
controller. In order to accurately model the motion of the
physical robot, the planner must also take into considera-
tion the low-level controller that drives the physical robot
[41]. Most of the existing approaches ignore these aspects
or model them using simplified kinematic equations, which
may result in unrealistic estimates thus leading to failures in
path planning.

Existing works in this domain have tried to first model the
motion of tracked vehicles on rough terrain the process as
a set of analytical equations and then solve these equations.
However, as the complexity of the system increases so do
the computational costs of modelling, leading prior work to
focus only on certain specific aspects of the challenge such

J Intell Robot Syst (2019) 95: –151 526 515

as slope of the terrain or the effect of slip. As a result, the
accuracy of the prior methods is impacted by focusing on a
certain specific aspect of the system and neglecting others.

In contrast with existing literature in this domain, we
propose the use of physics engines to model the kino-
dynamic aspect of planning. A physics engine is software
that provides a simulation of physical systems, capable
of simulating rigid body dynamics (including collision
detection), soft body dynamics, and fluid dynamics. These
are primarily used in the domains of computer graphics,
video games, movies and high-performance scientific
simulation. A physics engine calculates the forces that
arise between bodies when they interact with each other,
with the goal of preventing bodies from inter-penetrating.
These forces are then used to derive the motion of the
bodies, using multi-body dynamic equations. The engine
also models various joints, such as revolute or prismatic
joints, as sets of algebraic constraint equations. The effects
of friction that arise between the bodies while they interact
are also take into consideration. In order to solve for
the motion of the objects within the simulation, a time
stepping approach is used wherein the differential algebraic
equations (DAE) from the dynamics and constraints are
solved simultaneously to obtain the state of the system
subsequent to the time step. For more details regarding the
working of physics engines refer to [48–50].

Compared to the existing analytic modeling approaches,
the use of a physics engine offers a more computationally
efficient and practical solution to model the robot-terrain
interactions, low-level control algorithms and the sensor
models that the actual robot possesses. The use of a
physics engine allows for the state evolution of these
systems forward in time while taking into account motion
dynamics, gravity, friction and other aspects of ground
interaction. The robot model can be initialized in most
existing physics engines by importing the robot in Universal
Robot Description Format (URDF). The URDF consists of
a set of files describing the physical attributes of the robot
such as mass, inertia, and the dimensions of the various links
as well as how they connect together. Provided the robot-
terrain system is correctly initialized, the future states can
be obtained with a reasonable degree of accuracy through
simulation without having to derive and solve the equations
that govern the evolution of the system.

The engine needs only the current state of the system
and the control inputs in order to estimate the new state,
much like the actual physical robot itself. In other words,
the high-level planner can treat the physics engine as a
“black box”. By simulating the motion of the robot from one
waypoint to another, the planner can take into account the
dynamics of robot-terrain interactions, including slip, in a
realistic manner during the planning stage itself and thereby

accurately chart a feasible path. The above reasoning
justifies the use of physics based robotic simulators for state
expansion, rather than simplified dynamic equations, at the
cost of marginal increase in computational load.

A comparison of some of the existing state of the art
physics engines can be found in [51]. For the purposes
of this work, we will be using Bullet Physics in headless
mode to reduce the computational overhead [52]. Bullet was
chosen due to the superior performance of its friction model
and the excellent documentation available online. Moreover,
Bullet falls under the category of real-time physics engine as
it uses approximate calculations in order to produce accurate
real time results. While Bullet is capable of modelling
soft terrain such as in the case of loose sand or mud, the
simulations used in this work treat both the robot and the
terrain as rigid bodies. The approximation of rigid bodies
allows for faster simulation based on the capabilities of
current state of the art physics engines. As physics engines
improve in their ability to model soft deformable objects
and their interaction, simulations that are more realistic can
be incorporated for better representation of the motion of
a tracked vehicle on deformable terrain such as loose sand
or mud, increasing the accuracy of the proposed approach.
The hardware and software improvements necessary for
incorporating these features are part of ongoing work.

3.4 Low-level Controller

The path computed by the high-level planner (a set of
waypoints ending at the goal) will be executed on the
physical robot by a low-level controller. The low-level
controller, running at a higher frequency than the high-level
planner, continuously monitors the state of the robot and the
environment through sensors in order to generate control
inputs (right and left track velocities for a differential drive
robot) to ensure stable navigation from the current state
to the next waypoint. For the proposed approach, a hybrid
automaton is used as the low-level closed loop controller.

Navigating successfully in a dynamic environment is a
challenging task, especially from a control system design
perspective. The system should be capable of reacting to a vari-
ety of situations that may occur at unknown time instants.
One of the ways to approach this problem is through the
design of behavior-based control, where separate controllers
are formulated for handling different scenarios such as
going towards the goal, avoiding an obstacle, and stopping
the robot upon reaching goal. A higher-level state machine
is made responsible for switching between the behaviors
based on the external inputs, such as sensor information
from proximity sensors or laser scanners, thereby ensuring
that the robot always operates within one of the finite states
(the behavior-based controllers) at any given point of time.

J Intell Robot Syst (2019) 95: –151 526516

Fig. 3 a Working of the hybrid automaton b State machine representation of the hybrid automaton

Guard conditions inside the state machine designed for each
behavior enable switching between the behaviors. The indi-
vidual behaviors, along with the state machine and the guard
conditions, together form a hybrid automaton based closed
loop controller for autonomous mobile robot navigation
[53].

While this approach simplifies the controller design, the
presence of hard switches in the behavior could introduce
chatter due to scenarios that require infinite switches in
finite time (Zeno phenomenon) and thereby detrimentally
affect the performance of the overall system. As mentioned
in [53] this can be solved by adding regularization
controllers to fuse the behavior of the two conflicting nodes
in the system. The design of a hybrid automaton based
closed loop controller for low-level mobile robot navigation
is described in [54]. We will be using a simplified version
of the same as the low-level controller for our proposed
approach. The hybrid automaton used in the proposed
planner essentially consists of two different behaviors, the

Go-to-goal behavior and the Avoid-obstacle behavior, with
an additional regularization node, Avoid-obstacle-and-Go-
to-goal controller having the fused behavior of both the
above nodes. Figure 3 illustrates the working of the hybrid
automaton based closed loop controller.

The system starts at the Go-to-goal controller and stays
in this state until an obstacle point is detected within d1, as
seen in Fig. 3. At this condition, the state machine switches
to the Avoid-obstacle-and-Go-to-goal controller. Within this
state, if the robot detects an obstacle point closer than d2,
where d2 < d1, it switches to the Avoid-obstacle controller.
In order to prevent rapid switching on and off a particular
state when the robot senses an obstacle point exactly at di

(where, i = 1, 2); the exit conditions of the state have an
additional εi term (where, εi¿ 0). To ensure that the robot
stops when it reaches within a threshold distance (dthresh) of
goal, an additional “Stop” state is provided.

The following section describes the modelling of the
system and the design of each of the individual control

Fig. 4 a Kinematic model of the robot b Go-to-goal controller c Avoid-obstacle controller d Avoid-obstacle-and-Go-to-Goal controller

J Intell Robot Syst (2019) 95: –151 526 517

behaviors as shown in Fig. 4. The linearized kinematic
model for a differential drive robot is given below:

ẋ = 1

2
(vr + vl) cos φ

ẏ = 1

2
(vr + vl) sin φ

φ̇ = 1

L
(vr − vl) (1)

where:
(x, y) is the 2D position and φis the orientation of the

robot
L is the distance between the left and right tracks of the

robot
vr , vlare the left and right track velocities, respectively
For the ease of designing a controller, the differential

drive robot is modelled as a unicycle with the same three
states, but different control inputs: ν (for linear velocity)
and ω (for angular velocity). The unicycle robot kinematic
model is given by:

ẋ = ν cos φ

ẏ = ν sin φ

φ̇ = ω (2)

Once the unicycle model’s control inputs (ν, ω) are determined
based on the current state, desired goal state and sensor
inputs, they are mapped into differential drive model’s con-
trol inputs (νr , νl) through the following transformations:

νr = 2ν + ωL

2

νl = 2ν − ωL

2
(3)

The Go-to-goal controller is essentially a PID controller that
drives the vehicle to the nearest waypoint as provided by the
high-level planner. In order to drive the robot from current
location (xr , yr) to a goal location (xg, yg), the robot has
to first align towards the goal and then drive forward till it
reaches a location within the threshold distance to the goal
point. The slope of the line connecting the robot and the goal
position, φd , is the desired orientation of the robot. Based
on the heading error the angular velocity control input (ω)

to the robot can be determined from the equations below:

e = φd − φ

ω = kpe′ + kd ė′ + ki

∫
e′dt (4)

where,
kp, kd and ki are the proportional , derivative and integral

gains, respectively.
e′ is the error limited between [–π , π) in order to account

for the wraparound of orientation

As for the robot’s linear velocity, a proportional controller
is applied with the distance from the goal (d) as the error:

d =
√(

xg − xr

)2 + (
yg − yr

)2

ν = kd (5)

where,
k is the proportional gain
The Avoid-obstacle controller works in a similar manner

to the Go-to-goal controller, as shown in Fig. 4c. It
is designed to work with real-world obstacles that have
finite size, using obstacle detection sensors like ultrasonic,
infrared or LIDAR. Based on the sensor information, the
planar (x, y) coordinates of the obstacle point are obtained
in the global coordinate frame, provided the robot’s position
and orientation are known. The vector leading from the
robot’s current location to the estimated obstacle’s location
is then extended in the reverse direction to obtain the
coordinates of the “avoid obstacle” (xao, yao) point. The
robot is then driven towards this point in the same manner
as the Go-to-goal controller with (xao, yao) as the goal
allowing the robot to effectively avoid the obstacle. In case
of multiple sensors the points can be averaged to obtain a
final “avoid obstacle” point.

The Avoid-obstacle-and-Go-to-goal controller provides
for the regularization of the hybrid automaton by fusing
the behavior of individual Avoid-obstacle and Go-to-goal
controllers. For this behavior, the robot first computes the
“avoid obstacle” point in global coordinates as described
above. The normalized vectors to the “avoid obstacle” point
(
−→
AO) and the goal point (�G) are then combined using

weighting factors to find the regularization point, �R (xreg,
yreg), as given below:

�R = α �G + (1 − α)
−→
AO (6)

where,
αε[0, 1] is the weighting parameter which is tuned for

performance.
Once this point is obtained, the robot can be driven

towards this point in the same manner as the Go-to-goal
controller, with (xreg, yreg) as the goal. The working of
the Avoid-obstacle-and-Go-to-goal controller is illustrated
in Fig. 4d. For more details on the design of the hybrid
automaton, individual behaviors and the guard conditions,
refer to [54]. While the hybrid automaton based navigation
system introduced in [54] does include other behaviors
like “Follow Wall” for handling complicated environments,
involving concave obstacles, the presence of a high-
level planner in the proposed architecture handles these
complicated cases much more efficiently, without requiring
the additional behaviors.

J Intell Robot Syst (2019) 95: –151 526518

3.5 Implementation Details

The following section provides further details on the
proposed approach to provide the reader with a deeper
understanding for the application of the method.

Computational time For the purpose of the simulation
and the experimental validation described in the following
sections, the 2D grid resolution for the high-level planner is
kept equal to 0.5m along both the axis. With the fixed grid
resolution, the time taken by the physics engine to simulate
the motion of the robot between two adjacent cells is at max
0.6 seconds (while running on an HP laptop with a 2.6 GHz
Intel processor and 8GB RAM). Once the robot reaches
the neighboring cell, the simulation is terminated and the
motion is reported feasible to the high-level planner along
with the cost. The minor variation in time taken is caused
by variations in the nature of the terrain corresponding to
the cells. In cases where the robot fails to reach the goal,
the simulation could run infinitely long. To prevent this, the
simulation is forcibly terminated after one second and the
motion is reported not feasible. Under the above approach,
one second is the worst-case time taken to simulate the
motion of the robot between two adjacent cells.

Optimality of path The proposed approach is capable of
finding the optimum path by using an optimal high-level
planner, D* Lite in this case, after a subset of feasible
paths are provided through the physics engine. Like any
other implementation, the definition of optimality depends
on the cost function assigned to the planner. For the
sake of demonstrating the functionality of the proposed
implementation, the length of the path traversed by the robot
to reach the goal is optimized. As indicated by previous
works [45, 55, 56] the shortest path may not be optimal
in terms of time taken by the robot to reach the goal or
the energy spend by the robot in doing so. By modifying
the cost function on the high-level planner, one can enable
the proposed approach to optimize for time, energy or any
combination of these, since all of the costs associated with
the motion of the robot can be obtained from the physics
engine.

Handling slip The kinematic model of the differential
drive robot described in Section 3.3 is solely used for
designing the low-level controller. This is done without
taking into account the effects of slip. The physics engine
in the proposed architecture is responsible for handling the
longitudinal and lateral slip experienced by the robot. The
coefficient of friction of the terrain modelled inside the
physics engine is kept low such that the robot experiences
more slip than it would in reality. By simulating robot
motion on such terrain, the proposed navigation architecture

can detect possible maneuvers by the robot that may fail
in the real world during the planning stage itself. Even
though conservative in nature, this approach allows the
system to handle longitudinal and lateral slip by avoiding
such maneuvers while evaluating the path to goal. This
is demonstrated in the experimental trials, which were
performed in a high slip condition as described in the
following section (Section 5). This validates the fact that
the proposed planner takes into account the slip of the robot
during the planning stage itself, unlike existing approaches.
Additional improvements such as estimating slip while
traversing through the unknown terrain and updating the
physics engine in real time will be considered as part of the
future work.

4 Simulation

In order to validate the feasibility of the proposed planning
architecture, it was initially tested using simulation. The
simulations were performed using the V-REP robotic
simulator provided by Coppelia Robotics [57]. The terrain
maps were generated using the ANT landscape add on [58]
in BLENDER [59], which was then imported into V-REP
for simulation. The motion of the robot was simulated in two
different terrain maps differentiated by increasing frequency
of variations in the terrain height map, characterizing a
moderate and extreme level of roughness. The simulated
terrain domain in both cases was a square with sides
four meters in length. For the moderate terrain case, the
simulated terrain height varies from a minimum of −0.5 m
to a maximum of 0.3 m. For the extreme terrain case, the
simulated terrain height varies from a minimum of −0.5 m
to a maximum of 0.1 m, but with high frequency variations
in terrain height as compared to the moderate terrain case.
For both the terrain maps, the starting position of the robot
is considered as ground level or zero elevation. The robot
used for the simulation is the caterpillar model provided in
V-REP with a nodding SICK LMS 300 LIDAR for obtaining
the terrain map and five ultrasonic sensors (two on each
side and one in the front) for the low-level Avoid-obstacle
controller. The simulated robot is 0.5 m in length, 0.5 m in
width and 0.3m in height, with a total mass of 16Kg.

The proposed planning architecture, including the D*
Lite high-level planner and the low-level hybrid automaton
controller, were implemented in MATLAB which then
communicates with V-REP through the remote API
interface. A snapshot showing the motion of the robot
perceived by the planner running in MATLAB and the
corresponding position of the robot in V-REP during the
extreme terrain simulation is shown in Fig. 5. During the
simulation the position and orientation (all six dimensions)
of the robot was read off directly from the simulator by the

J Intell Robot Syst (2019) 95: –151 526 519

Fig. 5 a Motion of the robot as perceived by the planner, b Corresponding position of the robot in the simulation

low-level controller running in MATLAB. Bullet Physics
running in headless mode was used to model the dynamic
aspects of the planning problem. For both the simulation
cases, the results of the proposed planner were compared
with the outputs of a kinematic planner. The only difference
between the proposed planner and the kinematic planner is
that the kinematic version does not check the validity of
the proposed path using the physics engine, ignoring the
dynamic aspects of the problem. This allows the kinematic
planner to produce the optimal shortest path in all cases,
with no regard to the feasibility of the proposed path. Both
the simulated terrains have bounding walls to prevent the
robot from going outside the simulated region. Other than
the bounding walls, no other static obstacles were present in
both the terrain maps. For the purpose of the simulation, the
low-level controller was set such that the simulated robot
would not detect the terrain features as obstacles.

4.1 Results and Inferences

The proposed planning architecture was able to find feasible
paths in both moderate and extreme terrain cases, whereas
the kinematic planner failed in the second case. In addition,
the proposed planner matched the results of the kinematic
planner in producing the shortest feasible (optimal) path for
the moderate terrain case. This signifies the improvements
of the proposed method over the existing artificial potential
field methods and others that do not consider the dynamics
of the robot or terrain topography.

Based on the results, in both the simulation cases, the
proposed planning architecture met the requirements that
were described in the previous sections. The results of the
simulation are shown in the topographical plots in Fig. 6,

with the outcome of the kinematic planner in red and the
proposed planner in blue. The density of the terrain lines
denotes relative steepness of the terrain. For both cases, the
waypoints provided by the planner are shown as dots and
the path followed by the simulated robot in dashed lines. In
both scenarios, the kinematic planner outputs the shortest
path to the goal, which is a straight line. For the moderate
terrain case, the proposed planner matched the result of the
kinematic planner showing that it is optimal in terms of path
length.

For the extreme terrain case, the shortest path is not
feasible since at point B, as shown in Fig. 6b, the terrain
is too steep for the robot to climb. The kinematic planner
fails at this point whereas the proposed planner detects the
failure inside the physics engine and therefore takes a right
6turn in order to ensure the feasibility of the proposed path,
while still trying to minimize the overall path length. In
addition, the proposed method shows better performance as
compared to artificial potential field methods that use the
height map of the terrain to develop with feasible paths.
At point A as shown in Fig. 6b, artificial potential field
methods and methods looking for smooth regions in the
terrain map would have traveled in the reverse direction
in order to avoid the steep climb. The proposed method
instead checks whether the robot can execute the climb
inside the physics engine and based on the result decides
to go forward, resulting in a shorter path to goal. The
deviations of the robot from the desired path at points B, C
and D as shown in Fig. 6b, are due to the longitudinal and
lateral slip experienced by the simulated robot in V-REP.
Figure 7 shows the path followed by the simulated robot
in the extreme terrain case for both the planners in 3D for
better clarity.

J Intell Robot Syst (2019) 95: –151 526520

Fig. 6 Performance comparison of the proposed planner with kinematic planner: a Moderate terrain b Extreme terrain

5 Experimental Validation

The proposed planning architecture was experimentally
validated using STORM, a mobile robot platform developed
in the Robotics and Mechatronics Lab [16]. STORM
has multi-directional mobility capabilities enabled via
hybrid combination of tracks and wheels that operate
independently of each other. It also has ultrasonic sensors
on all four sides for obstacle avoidance applications. For the

purpose of this paper, the robot was operated only in tracked
differential drive mode. The robot is 0.41 m in length, 0.3 m
in width and 0.12 m in height, and weighs a total of 9Kg.
The robot possesses ultrasonic sensors on all four sides for
obstacle avoidance and utilizes an ODROID XU4 computer
for onboard processing. 3D scans of the experimental terrain
(height map) were obtained using a Kinect XBOX One. Due
to the limited battery power and computational capability
available onboard the robot, a complete 3D scan of the

Fig. 7 Terrain topography map showing the 3D path followed by the robot under both the planners in extreme terrain simulation

J Intell Robot Syst (2019) 95: –151 526 521

Fig. 8 a Experimental setup b STORM fitted with LOSA marker

terrain was obtained beforehand for the experiment rather
than in real-time.

For the duration of the experiment, positional informa-
tion of the robot was obtained using Linear Optical Sensor
Arrays (LOSA) tracking system, an opto-inertial motion
tracking device developed in the Robotics and Mechatron-
ics Lab [60]. The LOSA system is capable of providing 3D
position and orientation information at very high accuracy,
up to 1 mm in position and 1 degree in orientation. The
near-infrared LOSA marker was mounted on the robot and
the LOSA tracker was connected to a laptop. Based on the
current location of the robot as obtained from LOSA, the
provided location of goal and the terrain map, the planner
computes a feasible path to reach the goal. The proposed
planner running on the laptop sends the path as waypoints
to the robot’s onboard computer through ROS. The low-
level hybrid automaton controller running onboard the robot
takes the waypoints as intermediate goals along with the
positional information in order to drive the robot. As the
infrared sensors on LOSA and Kinect XBOX One used
in this experiment are limited to indoor use, the proposed
planning architecture was tested on a rough terrain model
created indoors using a tarp-covered rubble pile to create a
varied, high slip environment. The experimental terrain had
an overall length of 5.5 m and width of 5.5 m. The terrain
height varied from 0m to a maximum of 0.25 m.

A picture of the experimental setup, showing the start and
goal positions, are shown in Fig. 8a. The STORM module
fitted with the LOSA marker is shown in Fig. 8b. As in the
case of simulation, a virtual bounding wall was provided
inside the planner to prevent the robot from going outside
the limits of the experimental setup as shown in Fig. 10. In
addition, the low-level controller was set such that STORM
would not detect the terrain features as obstacles. For the

purpose of the experiment, the 2D grid resolution for both
the proposed and kinematic planner was kept equal to 0.5m
along both the axis. Due to this resolution, the path proposed
by the kinematic planner is not a straight line. Reducing
the grid size would improve the resolution of the planner
thereby making the path proposed by the kinematic planner
closer to the ideal straight-line path at the cost of increased
computation.

5.1 Results and Inference

For the purpose of experimental validation, the robot was
required to go from one end of the terrain to the other

Fig. 9 Performance comparison of the proposed planner with
kinematic planner over the experimental setup

J Intell Robot Syst (2019) 95: –151 526522

Fig. 10 Terrain topography map showing the 3D path followed by the robot under both the planners over the experimental setup

while crossing a steep ridge (denoted as point A in Fig. 9)
in the middle. As in the case of the simulations, both
the kinematic planner and the proposed planner were used
to plan the path of the robot. The kinematic planner
proposed the shortest path, which required the robot to
cross the steep central ridge. The robot was unable to cross
the ridge during the experiment and thus the kinematic
planner failed. The proposed planner was provided with
the complete map of the terrain within the physics engine,
from which it evaluated that the robot would not be able
to cross the central ridge. Based on this information, the
proposed planner developed a longer but feasible path that
successfully guides the robot to the desired goal location.
The path proposed by the kinematic planner and the
proposed planner are shown as waypoints in Fig. 9. The
actual path followed by the robot in both cases is also
shown.

The deviation of the actual path followed by the robot
from the waypoints specified by the planners is mainly due
to the significant slip encountered by the system on the
tarp. For the purpose of the experiment, the dthresh value
was set to 200 mm. This means the low-level controller
running on the robot assumes that the goal point is reached
as soon as it is within 200 mm distance from the point.
Figure 10 shows the path followed by the robot under the
action of both the planners in 3D for better clarity. The high
frequency oscillations in the robots motion as seen in the
results are mainly due to the slipping of the robot tracks on
tarp. On an outdoor terrain with less slip, the robot should
be able to achieve a smoother trajectory. The experiments

thus demonstrate that the proposed planner is more effective
in providing a feasible path than existing planners. Coupled
with the online physics check, the proposed planner presents
clear advantages for rough, unstructured terrain planning.

The time taken by the robot to reach the goal under the
action of the proposed navigation architecture is 1 minute
and 47 seconds. As the high-level planner implements D*
Lite, the proposed architecture dynamically replans at every
waypoint based on the updated map. Therefore, the above-
mentioned time depends not only on the planner but also
on the average speed of the robot, type of terrain and even
on the communication delay between the proposed planner
running on the laptop and the low-level controller running
on board the robot. A detailed study of the time taken by the
proposed planner for different terrain conditions, including
other factors such as the amount of energy expended is
beyond the scope of this paper and will be explored in the
future.

6 Conclusion and FutureWork

This paper proposed the use of a novel planning architecture
to overcome the shortcomings of existing kinematic and
artificial potential field based path-planning methods for
mobile ground robot navigation in high dynamic terrains.
The proposed planning architecture involves the use of a
grid based high-level planner along with a physics engine
to take into consideration of the kino-dynamic aspects
of robot-terrain interactions. The path proposed by the

J Intell Robot Syst (2019) 95: –151 526 523

high-level planner as a set of waypoints to the low-level
hybrid automaton controller is checked for feasibility inside
the physics engine. The same hybrid automaton was then
used to execute the proposed path on the real robot. The
proposed method was validated through both simulations
and experimental results. In both, the performance of the
proposed planner was tested against a kinematic planner
that does not take into account the dynamics of the robot
or terrain. In both simulation and experiment, the proposed
planning architecture has shown clear improvement in
performance by developing feasible paths in challenging
terrain conditions where the kinematic planner failed.
Furthermore, in moderate terrain conditions the proposed
planner produced paths as efficient as those of the kinematic
planner. These results demonstrate that the proposed planner
is optimal in terms of path length, while taking into account
the feasibility of the proposed path.

The proposed navigation architecture is capable of
handling static obstacles by means of the D* Lite high-
level planner. By assuming that all the obstacles are static,
the high-level planner can take into account the possibility
of collisions while the robot moves to the goal without
taking into account the actions of the robot in the velocity
space or adding time as a dimension to the planning
space. However, there exist planners that can handle moving
obstacles by adding time as a dimension to the planning
space [61, 62]. By replacing D* Lite with these planners,
along with providing estimated velocity of the moving
obstacle inside the physics engine, the proposed approach
will be able to handle moving obstacle cases efficiently. A
drawback to this is that as the number of moving obstacles
increases, the computational overhead of the physics engine
also increases. In order to incorporate dynamic obstacle
planning, additional hardware and software computational
optimizations will be required.

Due to the limitations in the infrared sensing elements
(Kinect and LOSA), the proposed architecture was tested
under indoor conditions. In order to perform such test
outdoors, the 3D scan of the terrain can be obtained from a
nodding LIDAR and the position data for the robot can be
obtained through a 3-D radio frequency-based positioning
sensor such as POZYX [63]. To further validate the planner
in future work, the proposed algorithm will be tested using
a heavier robot like the HMMR [17] on more challenging
outdoor terrain conditions.

The planning architecture described in this paper
assumed constant slip over the full duration of navigation.
The dynamic model of the robot was assumed constant
as well. In real-life conditions, these assumptions may not
hold. Slip can vary based on the type of terrain the robot
is operating on, while factors affecting the dynamic model
of the robot such as total mass of the robot and positon of
the center of mass could change based on the nature of the

mission performed by the robot. Future work will aim to
take into account these cases as well.

The idea proposed here of using a robotic simulator
to predict the behavior of an autonomous robotic system
to make intelligent decisions regarding the behavior of
a robot can be applied to other domains as well. Even
though this work explains the application of the novel
path planning method for a tracked differential drive
robot, the overall approach used here can be applied to
autonomous navigation of any robotic system. For instance,
physics engines are capable of modeling the motion of
quadcopters, including the execution of extreme maneuvers.
For path planning applications involving quadcopters, a
high-level planner will have to evaluate the feasibility of
such maneuvers under a given environment, such as while
flying inside a collapsed building structure for search and
rescue operations. The proposed approach using physics
engines can provide better results in such cases. The major
difference in applying the proposed framework to other
platforms, including quadcopters and AUVs will be in
designing stable closed-loop controllers that can work at
the lowest level for these highly nonlinear systems. The
overall approach of using a high-level planner along with
a physics based simulation, including the robot model with
the low-level controller, can remain the same.

Acknowledgments This work is supported in part by the US
Army Medical Research & Material Command’s Telemedicine &
Advanced Technology Research Center (TATRC), under Contract No.
W81XWH-16-C-0062. The views, opinions, and/or findings contained
in this report are those of the authors and should not be construed as
an official Department of the Army position, policy, or decision unless
so designated by other documentation.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

References

1. Odedra, S., Prior, S., Karamanoglu, M.: Investigating the mobility
of unmanned ground vehicles. In: Proceedings of the international
conference on manufacturing and engineering systems. Huwei,
Yunlin (2009)

2. Murphy, R.R.: A decade of rescue robots. In: 2012 IEEE/RSJ
international conference on intelligent robots and systems,
pp. 5448–5449 (2012)

3. Murphy, R.R., et al.: Search and rescue robotics. In: Siciliano, B.,
Khatib, O. (eds.) Springer handbook of robotics, pp. 1151–1173.
Berlin, Heidelberg (2008)

4. Nagatani, K. et al.: Emergency response to the nuclear accident at
the Fukushima Daiichi Nuclear Power Plants using mobile rescue
robots. J. F. Robot. 30(1), 44–63 (2013)

5. Murphy R.R.: Disaster robotics, vol. 1. The MIT Press, Cambridge
(2014)

6. Davids, A.: Urban search and rescue robots: from tragedy to
technology. IEEE Intell. Syst. 17(2), 81–83 (2002)

7. Snyder, R.G.: Robots assist in search and rescue efforts at WTC.
IEEE Robot. Autom. Mag. 8(4), 26–28 (2001)

J Intell Robot Syst (2019) 95: –151 526524

8. Murphy, R., Casper, J., Hyams, J., Micire, M., Minten, B.:
Mobility and sensing demands in USAR. In: 2000 26th annual
conference of the ieee industrial electronics society. IECON 2000.
2000 IEEE International Conference on Industrial Electronics,
Control and Instrumentation. 21st Century Technologies, vol. 1,
pp. 138–142 (2000)

9. Murphy, R.R., Kravitz, J., Stover, S.L., Shoureshi, R.: Mobile
robots in mine rescue and recovery. IEEE Robot. Autom. Mag.
16(2), 91–103 (2009)

10. U.S. Army Medical Research and Material Command,
“Unmanned Systems Teaming for Semi-Autonomous Casualty
Extraction,” SBIR-STTR, 2017. [Online]. Available: https://www.
sbir.gov/sbirsearch/detail/1319095. [Accessed: 11-Feb-2017]

11. Beebe, M.K., Gilbert, G.R.: Robotics and unmanned systems –
‘Game changers’ for combat medical missions. In: Proc. NATO
RTO-HFM 182 Symp. Adv. Technol. New Proced. Med. F. Oper.
(2010)

12. Paden, B., Cap, M., Yong, S.Z., Yershov, D., Frazzoli, E.: A survey
of motion planning and control techniques for Self-Driving urban
vehicles. IEEE Trans. Intell. Veh. 1(1), 33–55 (2016)

13. LaValle, S.M.: Planning algorithms. Cambridge University Press,
Cambridge (2006)

14. Lamon, P. 3D-Position tracking and control for all-terrain robots,
1st edn., vol. 43. Springer, Berlin (2008)

15. Tarokh, M., McDermott, G.J.: Kinematics modeling and analyses
of articulated rovers. IEEE Trans. Robot. 21(4), 539–553 (2005)

16. Kumar, P., Saab, W., Ben-Tzvi, P.: A hybrid tracked-wheeled
multi-directional mobile robot. IEEE/ASME Trans. Mechatronics,
p Under revision (2017)

17. Ben-Tzvi, P., Goldenberg, A.A., Zu, J.W.: Articulated hybrid
mobile robot mechanism with compounded mobility and manip-
ulation and on-board wireless sensor/actuator control interfaces.
Mechatronics 20(6), 627–639 (2010)

18. Currier, P.N., Wicks, A.L.: A novel method for prediction of
mobile robot maneuvering spaces. J. Terramechanics 50(2), 85–97
(2013)

19. Thrun, S. et al.: Stanley: the robot that won the DARPA grand
challenge. J. F. Robot. 23(9), 661–692 (2006)

20. Bacha, A. et al.: Odin: Team VictorTango’s entry in the DARPA
urban challenge. J. F. Robot. 25(8), 467–492 (2008)

21. Urmson, C.P. et al.: High speed navigation of unrehearsed terrain?:
Red Team Technology for Grand Challenge 2004 (2004)

22. Currier, P.N.: A method for modeling and prediction of ground
vehicle dynamics and stability in autonomous systems. Virginia
Polytechnic Institute and State University (2011)

23. Chu, K., Lee, M., Sunwoo, M.: Local path planning for Off-
Road autonomous driving with avoidance of static obstacles. IEEE
Trans. Intell. Transp. Syst. 13(4), 1599–1616 (2012)

24. Goswami, A.: Hierarchical Off-Road Path planning and its valida-
tion using a scaled autonomous car. Clemson university (2017)

25. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press. (2005)

26. Siciliano, B., Khatib, O.: Springer Handbook of Robotics.
Springer-Verlag New York, Inc., Secaucus (2016)

27. Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., Konolige,
K.: The office marathon: robust navigation in an indoor office
environment. In: 2010 IEEE international conference on robotics
and automation, pp. 300–307 (2010)

28. Reina, G., Bellone, M., Spedicato, L., Giannoccaro, N.I.: 3D
Traversability awareness for rough terrain mobile robots. Sens.
Rev. 34(2), 220–232 (2014)

29. Castejón, C., Boada, B.L., Blanco, D., Moreno, L.: Traversable
region modeling for outdoor navigation. J. Intell. Robot. Syst.
Theory Appl. 43(2–4), 175–216 (2005)

30. Garrido, S., Moreno, L., Martı́n, F., Álvarez, D.: Fast marching
subjected to a vector field–path planning method for mars rovers.
Expert Syst. Appl. 78, 334–346 (2017)

31. Raja, R., Dutta, A., Venkatesh, K.S.: New potential field method
for rough terrain path planning using genetic algorithm for a
6-wheel rover. Rob. Auton. Syst. 72, 295–306 (2015)

32. Amorim, D., Ventura, R.: Towards efficient path planning of a
mobile robot on rough terrain, pp. 22–27 (2014)

33. Konolige, K.: A gradient method for realtime robot control. In:
Proceedings. 2000 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS 2000) (Cat. No.00CH37113),
vol. 1, pp. 639–646 (2000)

34. Fan, X., et al.: Integrated planning and control of large tracked
vehicles in open terrain. In: 2010 IEEE international conference
on robotics and automation, pp. 4424–4430 (2010)

35. Kelly, A., Stentz, A.: Rough terrain autonomous mobility part 2?:
an active vision , predictive control approach. Auton. Robots 5,
163–198 (1998)

36. Seraji, H., Howard, A.: Behavior-based robot navigation on
challenging terrain: a fuzzy logic approach. IEEE Trans. Robot.
Autom. 18(3), 308–321 (2002)

37. Howard, A., Werger, B., Seraji, H.: Integrating terrain maps
into a reactive navigation strategy. In: 2003 IEEE international
conference on robotics and automation (Cat. No.03CH37422),
vol. 2, pp. 2012–2017 (2003)

38. Cherif, M., Laugier, C.: Using physical models to plan safe and
executable motions for a rover moving on a terrain. In: Int.
Workshop on Intelligent Robotic Systems, pp. 57–66 (1993)

39. Iagnemma, K., Dubowsky, S.: Mobile robots in rough terrain. In:
Springer tracts in advanced robotics, vol. 12, p. XII, 111, no. 8,
Springer, Berlin (2004)

40. Brunner, M., Bruggemann, B., Schulz, D.: Hierarchical rough
terrain motion planning using an optimal sampling-based method.
In: Proc. - IEEE Int. Conf. Robot. Autom., pp. 5539–5544 (2013)

41. Kuwata, Y., Fiore, G.A., Teo, J., Frazzoli, E., How, J.P.: Motion
planning for urban driving using RRT. In: 2008 IEEE/RSJ
international conference on intelligent robots and systems,
pp. 1681–1686 (2008)

42. Pepy, R., lambert, A., Mounier, H.: Path planning using a dynamic
vehicle model. 2006 2nd International Conference on Information
&, Communication Tsechnologies 1(1), 781–786 (2006)

43. LaValle, S.M., jr.J.J.K: Randomized kinodynamic planning. I. J.
Robot. Res. 20(5), 378–400 (2001)

44. Kuwata, Y., Teo, J., Fiore, G., Karaman, S., Frazzoli, E., How,
J.P.: Real-Time Motion planning with applications to autonomous
urban driving. IEEE Trans. Control Syst. Technol. 17(5), 1105–
1118 (2009)

45. Webb, D.J., van den Berg, J.: Kinodynamic RRT*: optimal motion
planning for systems with linear differential constraints. CoRR,
vol. abs/1205.5 (2012)

46. Koenig, S., Likhachev, M. In: Proc. Eighteenth Natl. Conf. Artif.
Intell., pp. 476–483 (2002)

47. (Tony) Stentz, A.: The Focussed d* algorithm for Real-Time
replanning. In: Proceedings of the international joint conference
on artificial intelligence (1995)

48. Haug, E.J.: Computer aided kinematics and dynamics of
mechanical systems. Allyn & Bacon Inc., Needham (1989)

49. Ladd, A.M.: Motion planning for physical simulation. Rice
University (2006)

50. Coutinho, M.G.: Guide to dynamic simulations of rigid bodies and
particle systems london. Springer, London (2013)

51. Roennau, A., Sutter, F., Heppner, G., Oberlaender, J., Dillmann,
R.: Evaluation of physics engines for robotic simulations with a
special focus on the dynamics of walking robots. In: 2013 16th

J Intell Robot Syst (2019) 95: –151 526 525

https://www.sbir.gov/sbirsearch/detail/1319095
https://www.sbir.gov/sbirsearch/detail/1319095

International Conference on Advanced Robotics (ICAR), pp. 1–7
(2013)

52. Bullet Physics Engine Ver. 2.87. [Online]. Available: http://
bulletphysics.org/wordpress/. [Accessed: 11-Feb-2017]

53. Egerstedt, M., Johansson, K., Lygeros, J., Sastry, S.: Behavior
based robotics using regularized hybrid automata. In: Proceedings
of the 38th IEEE conference on decision and control (Cat.
No.99CH36304), vol. 4, pp. 3400–3405 (1999)

54. Egerstedt, M.: Controls for the masses [Focus on education]. IEEE
Control Syst. 33(4), 40–44 (2013)

55. Cheng, P.C.P., LaValle, S.M.: Reducing metric sensitivity in
randomized trajectory design. Proc. 2001 IEEE/RSJ Int. Conf.
Intell. Robot. Syst. Expand. Soc. Role Robot. Next Millenn. (Cat.
No.01CH37180) 1, 43–48 (2001)

56. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal
motion planning. Int. J. Rob. Res. 30(7), 846–894 (2011)

57. Coppelia Robotics, V-REP. [Online]. Available: http://www.
coppeliarobotics.com/. [Accessed: 11-Feb-2017]

58. Hazevoet, J., Anders, M., Huish, I.: ANT Landscape Extension
for Blender 2.6. [Online]. Available: https://wiki.blender.org/
index.php/Extensions:2.6/Py/Scripts/AddMesh/ANTLandscape.
[Accessed: 01-Jan-2017]

59. Blender v2.6. [Online]. Available: https://www.blender.org/.
[Accessed: 01-Jan-2017]

60. Kumar, A., Ben-Tzvi, P.: Spatial object tracking system based
on linear optical sensor arrays. IEEE Sens. J 16(22), 7933–7940
(2016)

61. Hsu, D., Kindel, R., Latombe, J.-C., Rock, S.: Randomized
kinodynamic motion planning with moving obstacles. Int. J. Rob.
Res. 21(3), 233–255 (2002)

62. Tang, S.H., Kamil, F., Khaksar, W., Zulkifli, N., Ahmad, S.:
Robotic motion planning in unknown dynamic environments:
existing approaches and challenges. In: 2015 IEEE Int. Symp.
Robot. Int.ll. Sensors, pp. 288–294 (2015)

63. POZYX positioning system. [Online]. Available: https://www.
pozyx.io/. [Accessed: 01-Jan-2017]

Bijo Sebastian received his B.Tech degree in Mechanical Eng. from
College of Engineering, Trivandrum, India in 2013. He received his
MS in Mechatronics from Central Mechanical Engineering Research
Institute, West Bengal, India in 2015. He is currently pursuing
Ph.D. at the Virginia Polytechnic Institute and State University under
the supervision of Prof. P. Ben-Tzvi. His research interests include
autonomous mobile robots, design and control of Exo-skeletons,
motion planning and computer vision.

Pinhas Ben-Tzvi received the B.S. degree (summa cum laude)
in mechanical engineering from the Technion—Israel Institute of
Technology, Haifa, Israel, and the M.S. and Ph.D. degrees in
mechanical engineering from the University of Toronto, Toronto,
Canada. He is currently an Associate Professor of Mechanical
Engineering and Electrical and Computer Engineering, and the
founding Director of the Robotics and Mechatronics Laboratory at
Virginia Tech, Blacksburg, VA, USA. Before joining the University
of Toronto in 2002, he was an R&D Engineer with General Electric
Medical Systems Company, developing medical diagnostic robotic
and mechatronic systems. His current research interests include
robotics and intelligent autonomous systems, mechatronics, human-
robot interactions, dynamic systems and control, mechanism design
and system integration, and novel sensing and actuation. Application
areas are varied and range from search & rescue on rough terrain
to medical diagnostics, surgery, and therapy. Dr. Ben-Tzvi is the
recipient of the 2013 GW SEAS Outstanding Young Researcher Award
and the GW SEAS Outstanding Young Teacher Award, as well as
several other honors and awards. Dr. Ben-Tzvi is a Technical Editor
of the IEEE/ASME Transactions on Mechatronics, Associate Editor of
IEEE Robotics and Automation Magazine, Associate Editor of ASME
Journal of Mechanisms and Robotics, and Associate Editor for the Int’l
Journal of Control, Automation and Systems. He is a senior member
of the Institute of Electrical and Electronics Engineers (IEEE) and a
member of the American Society of Mechanical Engineers (ASME).

J Intell Robot Syst (2019) 95: –151 526526

http://bulletphysics.org/wordpress/
http://bulletphysics.org/wordpress/
http://www.coppeliarobotics.com/
http://www.coppeliarobotics.com/
https://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts/AddMesh/ANTLandscape
https://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts/AddMesh/ANTLandscape
https://www.blender.org/
https://www.pozyx.io/
https://www.pozyx.io/

	Physics Based Path Planning for Autonomous Tracked Vehicle in Challenging Terrain
	Abstract
	Abstract
	Introduction
	Literature Review
	Proposed Method
	Novelty of the Proposed Approach
	High-level Planner
	Kino-dynamic Aspect of Planning
	Low-level Controller
	Implementation Details
	Computational time
	Optimality of path
	Handling slip

	Simulation
	Results and Inferences

	Experimental Validation
	Results and Inference

	Conclusion and Future Work
	Acknowledgments
	Publisher's Note
	References

