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Abstract—This paper describes a state estimation model for a 
multi-segment continuum robot that utilizes the displacement of 
passive cables embedded along the robot’s length to estimate its 
overall shape. As continuum robots are used in activities outside 
a laboratory environment, methods of measuring their shape 
configuration in real-time will be necessary to ensure robust 
closed-loop control. However, because these robots deform along 
their entire length and lack discrete joints at which primary 
displacements take place, conventional approaches to sensing 
joint displacement (e.g., encoders) are inappropriate. 
Furthermore, elasticity plays a key role in determining the 
resulting shape of the continuum robot, instead of the mechanics-
independent kinematic configuration frequently seen in rigid-link 
robotics. In order to enable accurate estimates of a continuum 
robot’s shape, the measured displacements of passive cables are 
utilized to detect the change in shape of the continuum robot. An 
optimization is used with a static model based on the principle of 
virtual power to map these cable displacements into the resulting 
continuum robot configuration. This state estimation model was 
implemented numerically in MATLAB and validated on an 
experimental test platform. 

Keywords—Continuum robotics, principle of virtual power, 
state estimation 

I. INTRODUCTION 
A critical challenge facing continuum robots is shape 

estimation for closed-loop control. Unlike conventional robotic 
systems with discrete joints, continuum robots exhibit 
deformation along their entire length. While these robots 
exhibit a wide variety of benefits, from their high inherent 
compliance to intrinsic whole-arm manipulation to high shape 
flexibility when navigating crowded environments, instead of 
being defined by a finite set of joint angles and displacements, 
these robots are more accurately defined as spatial curves.  

The authors’ previous work has focused on modeling the 
mechanics of these robots by bridging the gap between the two 
dominant approaches of either low-fidelity lumped parameter 
models [1] in which each segment is treated as a circular arc, or 
high-fidelity distributed parameter models, in which the 
continuum robot is treated as a one-dimensional parameterized 
curve in space [2,3]. The resulting mechanics model that 
bridges this gap assumed a robotic structure of a serial chain of 
subsegment arcs within a single segment, allowing for 

variations in curvature along a single segment (not possible in 
the low-fidelity lumped parameter model) while preserving a 
finite set of kinematic parameters to define the robot’s shape 
(instead of the continuous high-fidelity distributed parameter 
model). The principle of virtual power was utilized to derive 
the mechanics, enabling modeling of the time-varying 
dynamics and the time-invariant statics in a single formulation. 
The proposed shape estimation model utilizes this mechanics 
model to ensure the accurate estimation of the robot’s shape. 

This research is motivated by future applications’ need for 
continuum robots capable of more precise position control 
along the length. This is particularly true in autonomous and 
semi-autonomous operations in which direct teleoperation of 
the continuum robot is limited and instead relies on the on-
board sensing to perform a specified task. In surgery, this 
would ensure the surgical tool accurately tracks a pre-defined 
trajectory based on a priori analysis of medical imaging. In 
field robotics, this would ensure accurate shape conformation 
of a continuum tail to actively balance a legged robot or a 
continuum arm grasping an object. 

Previous research into continuum robot sensing has focused 
on shape estimation using either external sensing or integrated 
sensing. External sensing utilizes separate instrumentation 
from the robot itself, such as cameras [4,5] or ultrasound 
during surgery [6]. While these external sensors provide the 
greatest flexibility in terms of accurately measuring the robot’s 
shape, it is not feasible for implementation outside of 
laboratory or surgical environments. Furthermore, there is a 
high computational cost for real-time image processing and 
shape estimation to run alongside the robot’s control system 
For integrated sensing, previous approaches have included 
inertial measurement units [7], magnetometers [8], Hall effect 
sensors [9], electromagnetic tracking [10] and actuation 
monitoring, including cable tensions [11], rod forces [12] and 
pneumatic pressures [13]. Each of the first four approaches 
track properties such as position or orientation at discrete 
locations along the continuum robot to ensure those specific 
points behave as predicted (i.e., the angle is fixed to approach 
an opening). The actuation monitoring is utilized primarily to 
ensure the actuation matches the desired actuation, though it 
may be used for alternatives to shape estimation for tasks such 
as force sensing [14] and contact point estimation [15] along 
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the robot. However, challenges have been demonstrated when 
using actuation monitoring to estimate the shape of a 
continuum robot when using a purely kinematic model [13]. 

The proposed shape estimation method utilizes the 
measurement of the displacements of passive cables embedded 
along the continuum robots in conjunction with a model of the 
continuum robot’s mechanics to estimate the resulting shape of 
a continuum robot without direct measurement of the 
magnitude of the prescribed actuation forces. 

A. Outline 
This paper is organized as follows: Section II provides 

background into the virtual power mechanics model used in the 
shape estimation model. Section III describes the mechanics-
based shape estimation model, including the optimization-
based approach to minimize the difference between the 
measured passive cable displacements and the estimated shape 
configuration’s calculated cable displacements. Section IV 
describes the numerical implementation of the model in 
MATLAB, along with a variety of single- and multi-segment 
case studies to demonstrate the model’s efficacy. Section V 
describes the experimental validation of the model using a 
cable-driven continuum robot. 

II. BACKGROUND: VIRTUAL POWER MECHANICS MODEL 
As discussed in Section I, the key innovation in this model 

is the robot’s discretization, shown in Fig. 1. Instead of 
considering each segment as either a single circular arc or a 
parameterized curve in space, each segment is discretized into 
a serial chain of subsegments to define the robot’s shape. Each 
subsegment i is defined by three kinematic parameters: two 
orthogonal curvatures i and i, and a torsional twist i. 

The principle of virtual power, also called Kane’s method 
[16], utilizes variational calculus to calculate the mechanics of 
systems by minimizing the virtual power of the external forces 
and moments applied on the bodies composing the system. The 
total power of the system P in (1) is defined by the sum over 
the n bodies composing the system of the dot products of the 
net external forces Fi,ex and linear velocities vi , and the net 
external moment Mi,ex and angular velocities i .A vector of 
the robot’s curvatures and twist angles is the system’s 
generalized coordinate vector qk, and its derivative kq  is the 
system’s generalized velocity vector. 

 , ,F v Mi ex i i ex ii
P  (1) 

To take the variation of P, the linear and angular velocities 
are defined with respect to the generalized velocities, as shown 
in (2), where vi,k and i,k map the generalized velocities into the 

linear and angular velocities, respectively. Substituting (2) into 
(1) and taking the variation results in (3). In order for the 
virtual power variation to equal zero (the necessary condition 
to minimize the virtual power), (4) must be true for any 
arbitrary variation in the generalized velocities kq . 

 , ,,v vi i k k i i k kq q  (2) 

 , , , ,F v Mi ex i k i ex i k ki
P q  (3) 

 , ,F v Mi ex i i ex ii
P  (4) 

 The external forces and moments are defined in (5), where 
for each body i: Fi,inr and Mi,inr are the inertial forces and 
moments, Fi,act and Mi,act are the actuation transmission forces 
and moments due (e.g., cables or rods), Fi,gr is the gravitational 
force and Mi,el is the elastic effects (bending and torsion) 
moment. For static equilibrium, the inertial forces effects are 
omitted, and any velocity dependent terms are set to zero.  

 , , , ,

, , , ,

,F F F F

M M M M
i ex i inr i act i gr

i ex i inr i act i el
 (5) 

The inertial effects are calculated from the kinematics of 
the continuum robot by determining the linear and angular 
positions, velocities and accelerations of each disk. Then, the 
inertial effects are calculated using (6), where mi and Ii are the 
mass and inertia tensor of body i, and ai and i are the linear 
and angular accelerations of body i. 
 , ,,F a M I Ii inr i i i inr i i i i im  (6) 

Actuation effects are dependent on the actuation utilized. 
For cables, the tension of the final cable subsegment is applied 
at the point where the cable is tied off. On the intermediate 
disks, cable tensions for the surrounding cables are applied, 
with these forces reformulated as equivalent forces and 
moments on the center of mass. For actuation rods, the rod’s 
axial force is applied directly where the rod attaches to its 
terminal disk. The intermediate contact forces are found by 
calculating the instantaneous equilibrium of the rod. In each 
case, friction may also be included in the calculation of these 
forces: the friction reduces the axial force along the actuation 
transmission, reducing the magnitude at the terminal disk, and 
adds an additional tangential force applied on each 
intermediate disk that is reformulated into an equivalent force 
and moment at the center of mass. The elastic moments 
(bending and torsional) due to the deformation of the 
continuum robot’s core and actuation rods (if present) are 
calculated for each subsegment, and applied to the two rigid 
bodies adjacent to that subsegment. The bending moments are 
proportional to the subsegment curvatures, and the torsional 
moments are proportional to the twist angle. The gravitational 
force on each body is due to the mass of each discretized body. 

More in-depth analysis of the derivation of the continuum 
robot mechanics of cable- and rod-driven systems may be 
found in [17–19]. For this paper, cables will be used to transmit 
actuation along the robot, using the mechanics model described 
in [17]. However, both single- and multi-segment models will 
be utilized, using the formulation for multi-segment continuum 
robots presented in [18]. 

 
Fig. 1. Continuum robot structures utilized illustrating the disk/core 
discretization of the robot: (a) eight-disk, single-segment robot, (b) eight-
disk, two-segment 
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III. MECHANICS-BASED SHAPE ESTIMATION 
In order to determine the estimate of the continuum robot 

shape based on a measured set of  measured passive cable 
displacements j,meas, an optimization is constructed comparing 
each measured displacement to the calculated cable 
displacements j,calc based on the current shape estimate’s 
geometry. The objective function of this optimization should 
be based on the difference between each cable’s measured and 
calculated displacements. As discussed in Section IV, the sum 
of the squares function (7) is utilized. The robot shape is 
represented in this optimization by the estimated cable tensions 
T. At each iteration, the coupled algebraic equations defining 
the continuum robot’s equilibrium model will be solved to 
determine q. Then, this q will be utilized to solve for j,calc.  

 
2

, ,1
min
T r j meas j calcjR

 (7) 

Kinematic analysis is used to calculate the cable 
displacements. Three intermediate variables defined in (8) are 
used: the subsegment curvature magnitude ki, the subsegment 
bending plane angle i and the subsegment bending angle i, 
where L0 is the spacing between disks. As discussed in section 
II, i and i are the orthogonal curvatures that partially define 
each subsegment. The coordinates pi,lcl of the frame i origin (at 
the center of mass) relative to frame i-1 is found using (9), and 
the orientation Ri,lcl of frame i relative to frame i-1 is found 
using (10). In addition, the orientation Ri of each frame relative 
to the global frame may be found recursively using (11). 

 2 2
0, atan 2 , ,i i i i i i i ik k L  (8) 

 , 1 , 1 , ,p
i i i i i

T
i lcl i i ic c k s c k s k  (9) 
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The passive sensing cables will route through the disks at a 
fixed position relative to the disk’s center of mass. Figure 2 
illustrates the three cable routing geometries to be utilized: 
three- and four-cable arrangements for single-segment analysis, 
and a six-cable arrangement for two-segment analysis. For 

each arrangement, a 3-by-  matrix pj,hl,sens,lcl is used to define 
the cable sensing hole positions. As an example, the 
coordinates for the three-cable arrangement are defined in (12), 
where rhl,sens is the distance of the hole from the center of mass. 
These local coordinates are represented in the global frame by 
pi,j,hl,sens defined in (13). 

 
, , , ,

2 1 3, 1, 2,3

, , 0p
j j

j

T
j hl sens lcl hl sens

j j

r c s
 (12) 

 , , , , , ,p R pi j hl sens i j hl sens lcl  (13) 

For each cable j and subsegment i, the vector from hole j on 
disk i-1 to hole j on disk i may be found using (14). The norm 
of this vector is the distance between the two holes, and the 
cable displacement for this subsegment is this norm subtracted 
from L0. Equation (15) shows the calculation of the overall 
cable displacement for cable j, which terminates at disk . 

, , , , , , ,
, , 2 ,

, , , , 1, , ,

1

1

p p p
p

R p p p
i lcl i j hl sens j hl sens lcl

i j h h sens
i i lcl i j hl sens i j hl sens

i

i
 (14) 

 , 0 , , 2 ,1
pj calc i j h h sensi

L  (15) 

IV. NUMERICAL IMPLEMENTATION AND CASE STUDIES 

A. Numerical Implementation 
MATLAB [20] was used to implement the shape 

estimation model in two stages. First, an equilibrium model 
solver was generated in which a prescribed tension T is used to 
calculate the resulting generalized coordinates q. The ‘fsolve’ 
function was used to implement the model, in which the n 
generalized coordinates are solved using the n nonlinear 
equations resulting from the virtual power model. The initial 
guess of q in this solver is the static equilibrium configuration 
of the continuum robot when zero tension is applied. 

Using this mechanics model, a second solver was created 
for the optimization posed in (7). The ‘lsqnonlin’ solver was 
used to implement the model, in which 3, 4 or 6 cable 
displacement difference terms are used to define the objective 
function. A key benefit of the ‘lsqnonlin’ is its separate 
calculation of the objective function terms. Instead of returning 
a single scalar value for the sum of squares, a column vector of 
length 3, 4 or 6 (depending on the number of sensing cables) 
was provided to the solver. 

However, a key challenge encountered when solving this 
optimization arises due to the redundancy of the actuation 
cabling and the fact that the cabling cannot bear compressive 
forces. Without any modification, when solving for three input 
tensions for a single-segment manipulator, the optimization 
solver may not necessarily match the known prescribed input. 
For example, when a tension of 5 N is prescribed in cable 1 (or, 

, 5, 0, 0 NT
i inputT ), the resulting cable displacements 

are found to be , 9.41, 4.43 4.43 mmj calc  and the 

‘optimized’ tensions are , 5.42, 0.45, 0.45 NT
i optimT .  

 
Fig. 2. Actuation (outer) and sensing (inner) cable routing holes for the 
three structures under consideration: (a) single-segment with three 
actuating and sensing cables, (b) single-segment with three actuating and 
four sensing cables, (c) two-segment with six actuating and sensing cables; 
the cables in holes labeled 1-3 terminate at disk 4. 
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If these optimized solutions were normalized such that the 
lowest forces were adjusted to zero, the resulting set of 
tensions would be , 4.97, 0 0 NT

i shiftT . Conceptually, 
the challenge can be understood by imagining the continuum 
robot in a fully extended configuration (qi = 0) in the absence 
of gravity. If all three actuation cables are identically 
tensioned, there will be no bending or torsion, only axial 
deformation, in which the core contracts to generate 
compressive forces to oppose the actuation. Previous research 
[12,14,15] has used this actuation redundancy to control the 
compliance of the continuum robot during actuation, but in 
terms of shape estimation, the geometric configuration is 
dictated by the difference of the two cables from the cable with 
minimum tension. In order to minimize the robot’s axial force, 
this will mean that at least one cable will be in zero tension for 
each case study. Therefore, for each segment with three 
actuation cables terminating in that segment, the optimization 
will solve for two tensions, with the third tension fixed at zero. 

However, the challenge is now determining which tension 
to zero. Fundamentally, there are two possible approaches: (1) 
obtaining the information from the actuation control system, or 
(2) generating an algorithm for determining this from the cable 
displacement vector. While the first approach is simpler, it 
requires dedicated communication from the control system. 
However, greater challenges arise when trying to extrapolate 
the actuated cables from the cable displacements.  

In order to investigate the possibility of determining cable 

actuation from the measured properties, a systematic method of 
comparing actuation inputs is necessary. Based on the 
geometry of the continuum robot under consideration 
(discussed in Section IV-B), actuation inputs were determined 
to apply a uniform moment loading on the terminal disk of the 
robot in the absence of friction. For example, when cable 1 is 
actuated with a tension of 5 N, the moment loading on that 
terminal disk is 0.0425 N-m aligned with the y-axis. 
Alternatively, in order to obtain this same loading using equal 
actuation in cables 1 and 2, both would need to be tensioned 
with 5 N each, and the resulting moment would be along a 
vector at an angle 60o from the y-axis. 

Figure 3 illustrates the required actuation of the cables 
‘around’ the disk to result in a 0.0425 N-m magnitude moment 
in each direction. The angles along the x-axis are relative to the 
y-direction vector in the disk frame. The cable displacement 
profiles for these actuation profiles are shown in Fig. 4(b), with 
lines drawn at angles 120o and 240o to distinguish the three 
‘sectors’ for the actuation, in which cable 3 will be zero tension 
(sector 1), cable 1 will be zero tension (sector 2) and cable 2 
will be zero tension (sector 3). As can be seen, while the 
minimum cable displacement appears to be the best metric for 
determining the sector, there is an offset between the crossover 
point and the sectors themselves. Fig. 4(a,c) illustrate these 
same profiles for nominal cable tensions of 1 N (corresponding 
moments of magnitude 0.0085 N-m) and 10 N (corresponding 
moments of magnitude 0.085 N-m). As can be seen, the gap 
decreases as the bending moment increases.  

Alternatively, the same analysis was performed for a four 
sensor cable arrangement shown in Fig. 2(b). Figure 5 
illustrates the passive cable displacement profiles for this case, 
along with the 1 N and 10 N cases, and denotes the three 
sectors of the range using vertical lines. While there is greater 
symmetry between the four cable displacements due to their 
orthogonal arrangement, there is an inherent discrepancy 
between the cable profiles, due to the dissimilarity between the 
layouts. However, if a systematic algorithm could be 
determined to calculate the phase angle (i.e., the plot’s x-
coordinate) from the four values, the sector would be known.  

 
Fig. 3. Actuation tensions required to apply a constant moment loading of 
0.0425 N-m to the terminal disk without friction. 

 
Fig. 4. Sensing cable displacement profiles corresponding to single cable 
tensions of (a) 1 N, (b) 5 N, (c) 10 N with vertical lines separating sectors 1 
(0-120o), 2 (120-240o) and 3 (240-360o). 

 
Fig. 5. Sensing cable displacement profiles corresponding to single cable 
tensions of (a) 1 N, (b) 5 N, (c) 10 N with vertical lines separating sectors 1 
(0-120o), 2 (120-240o) and 3 (240-360o). 
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For the multi-segment implementation, instead of 
optimizing over two cable tensions, the optimization is over 
four cable tensions: two tensions for cables terminating in the 
first section and two tensions for cables terminating in the 
second segment. The issue of extrapolating the ‘active’ cabling 
from the cable displacements becomes an even larger challenge 
in this case, due to the loading the segment 2 cables apply on 
segment 1 due to their routing. As discussed in Section VI, 
further exploring this problem is an element of future work on 
this topic. 

For the case studies in the following section, the properties 
utilized in the simulations are presented in Table 1.  

B. Case Studies 
For each of the numerical case studies, a two-step process 

was followed: first, generate the simulated measured cable 
displacements; then second, utilize these values to re-calculate 
the original configuration/input cable tensions. For each 
simulation, a prescribed set of cable tensions Ti were chosen. 
For single segment simulations, at least one of the three 
tensions are set to zero, and for the multi-segment simulations, 
at least two are set to zero: at least one in the first three 
tensions (segment 1) and at least one in the second three 
tensions (segment 2). 

For the single-segment continuum robot, two arrangements 
of the passive cabling were studied: a three-cable arrangement 
illustrated in Fig. 2(a) and a four-cable arrangement illustrated 
in Fig. 2(b). The three cable arrangement provides cables in the 
same arrangements as the actuation cables, albeit a shorter 
distance from the center of the disk.  

For all three structures under consideration and for all 
actuation profiles utilized in these simulations, the optimization 
solver was able to successfully recalculate the original 
actuation to an accuracy exceeding 1e-6. In the following 
section, the solvers are tested with realistic measured values, in 
which measurement error complicates the analysis. 

V. EXPIRIMENTAL RESULTS 
In addition to the numerical simulations utilized to test the 

efficacy of the mechanics-based shape estimation model, a 
series of experiments were also performed using a continuum 
robot to estimate the prescribed tensions for a system based 
solely on the measured passive cable displacements and 
knowledge of which cables are actuated.  

Figure 6 shows the experimental test platform under 
consideration. A spring steel core (ASTM A228, 1.04 mm 
diameter, 240 mm long) was used with eight disks (ABS 
plastic, 30 mm diameter, 2 mm thick, 30mm disk spacing) 
mounted along the core using cyanoacrylate (Loctite 401). The 

actuation and sensing cabling is PFTE-coated fiberglass thread 
(0.43 mm diameter). The actuation cabling was routed over 
spools and hanging weights were used to apply the prescribed 
tensions. The sensing cables were also routed over spools, and 
lightweight masses (0.005 N) were used to pretension the 
sensing cabling. The changes in heights of these masses 
measured using calipers (General Fractional Calipers 147) and 
arranged into the j,meas vector. 

For the single-segment experiments, the measured cable 
displacements and estimated tension profiles are provided in 
Table 2 for three cases: (1) cable 1 actuated with 5 N, (2) 
cables 1 and 2 actuated with 5 N, and (3) cables 1 and 3 
actuated with 2 N and 5 N, respectively. The maximum error 
using both solvers is approximately the same (10.4% for 3 
cable; 10.9% for 4 cables), though the average error is less in 
the 4-cable sensing structure (2.89% vs. 3.98%), owing to the 
additional constraint in the optimization to improve accuracy. 

For the multi-segment, six-cable case, the measured 
displacements and estimated tensions are provided in Table 3 
for three cases: (1) cable 2 actuated with 5 N, (2) cable 6 
actuated with 5 N, and (3) cables 2 and 6 actuated with 2 N and 
5 N respectively. The maximum actuated tension error was 
4.94% (case 3, cable 2), and the maximum unactuated tension 
error was 9.55% (case 3, cable 1). For each case, the 
optimization was solving for variables in which the tension was 
known to be (because it wasn’t loaded) zero. If an optimization 
was constructed to only solve for the non-zero tensions, the 
errors of these non-actuated tensions would disappear, and the 
accuracy of the actuated tensions would increase. 

VI. CONCLUSIONS AND FUTURE WORK 
This paper presented a novel mechanics-based approach to 

shape estimation using the displacement of passive cabling 
embedded along single- and multi-segment continuum robots. 
A two-stage optimization was used to accomplish this, using 
the estimated actuation cable tensions as an intermediate set of 
variables. Using a sum-of-squares objective function composed 
of the differences between measured and calculated cable 
displacements, the cable tension vector was optimized to 
minimize this function. To calculate the cable displacements, 
the virtual power model of static equilibrium was utilized. 

TABLE I.  MATERIAL AND GEOMETRIC PROPERTIES FOR EXPERIMENTAL TEST PLATFORM. 

 Property Value  Property Value  Property Value 

mi Disk and Subsegment Mass 1.669·10-3 [kg] Ixx,lcl 
Disk and Subsegment 

Radial Moment of Inertia 
9.821·10-8 

[kg·m2] Izz,lcl
Disk and Subsegment 

Axial Moment of Inertia 
1.654·10-7 

[kg·m2] 

Jxx 
Core Second Moment 

of Area 
5.743·10-14 

[m4] Jzz 
Core Polar Moment 

of Area 
1.149·10-13

[m4] L0 
Initial Subsegment 

Length (Disk Spacing) 30 [mm] 

E Core Young’s Modulus 2.1·1011 [Pa] G Core Shear Modulus 8·1010 [Pa] g Gravitational Acceleration 9.81 [m/s2]
rhl,act Actuation Hole Radius 12.5 [mm] rhl,sens Sensing Hole Radius 8.5 [mm]  Coefficient of Friction 0.15 

 
Fig. 6. Cable-driven experimental test platform set-up with two segments. 
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Numerical case studies successfully recalculated prescribed 
cable tensions from the associated cable displacement vectors, 
and experimentally measured cable displacements on an 
experimental test platform were successfully used to estimate 
the configuration. 

Future work will include studying methods to estimate 
cable tensioning from the measured displacement vector, 
fusing this data with alternative methods of sensing for a 
higher accuracy state estimate, and designing actuation/sensing 
modules to test the efficacy of different sensors and the utility 
of dual use of the actuation cables themselves for sensing. 
Beyond the further improvements to shape estimation, this 
work will also enable further improvement to the control of 
continuum robotic systems in applications ranging from 
surgery to field robotics. In surgical applications, the inclusion 
of passive cabling in a continuum tool, or even utilizing the 
measured displacement of the actuation cabling and/or rods, 
could supplement alternative sensing methods and fuse the data 
using techniques such as Kalman filtering. In field robots, 
compared to current alternatives, this type of sensing structure 
is the most feasible for integration and on-board calculation of 
a shape estimate to utilize in autonomous control or provide to 
the teleoperator while performing tasks. 
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TABLE II.  ACTUATION ESTIMATES FOR SINGLE-SEGMENT 
STRUCTURES 

Actuation 
Input (N) 

3 Cbl. Disp. 
(mm)  

4 Cbl. Disp. 
(mm)  

3 Cbl. Actuation 
Estimate (N) 

4 Cbl. Actuation 
Estimate (N) 

T1 = 5 

9.17 9.09 5.045 4.922 
-4.48 0.54 0 0.0862 
-4.34 -8.88 0.046 0 

~ 0.23 ~ ~ 

T1 = 5; 
T2 = 5 

4.32 4.60 5.055 5.032 
6.94 9.03 0 0 
-9.29 -3.92 5.372 4.896 

~ 8.62 ~ ~ 

T1 = 2; 
T3 = 5 

-1.61 -1.42 1.9381 2.218 
-5.81 -8.59 0 0 
7.63 1.84 4.478 4.976 

~ 8.94 ~ ~ 

TABLE III.  ACTUATION ESTIMATES FOR TWO-SEGMENT STRUCTURE 

Act. Input (N) T2 = 5 N 
Disp. (mm) -3.23 5.62 -1.96 1.81 3.56 -5.21 
Act. Est. (N) -0.032 4.986 0 -0.001 0 0.236 
Act. Input (N) T6 = 5 N 
Disp. (mm) 1.92 -5.11 2.96 -5.16 -3.80 10.17 
Act. Est. (N) 0.226 0 -0.004 -0.021 0 5.045 
Act. Input (N) T2 = 2 N; T6 = 5 N 
Disp. (mm) 0.89 -2.89 1.82 -4.39 -2.82 7.97 
Act. Est. (N) 0.191 1.901 0 -0.029 0 4.9081 
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