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ABSTRACT 
This paper presents a generalized method of determining 

the static shape conformation of a cable-driven serpentine 
robot. Given a set of desired cable displacements as model 
inputs, the model calculates the joint angles and cable tensions 
that result from those displacements. The model’s governing 
equations are derived from ensuring static equilibrium at each 
of the robot’s revolute joints, along with compatibility 
equations ensuring the joint angles result in the desired cable 
displacements. Elastic, actuation and gravitational loading are 
included in the model, and the results analyze the relative 
impact of each for various combinations of cable displacement 
inputs. In addition, the impact of elasticity and mass 
distribution on the accuracy of purely kinematic constant-
curvature segment models is presented. In addition, the model 
also accommodates limits for the serpentine joint angles. The 
model is implemented in MATLAB, and results are generated to 
analyze the impact of the actuation, elastic and gravitational 
effects. Future work will include inertial effects in the model to 
make it dynamic. These models will be used as the foundation 
for a serpentine tail design for use on-board a mobile robot, 
and for task planning to enable that tail to be effectively used in 
various scenarios. 

1   INTRODUCTION 
In nature, tails are observed in numerous species of 

animals capable of performing a variety of functions. For 
example, cats use their tails to help balance, monkeys use their 
tails to help climb, cheetahs use their tails to help turn while 
running, fish and snakes use their tails for propulsion, 
kangaroos use their tails as an active counterbalance while 
jumping, and geckos use their tail’s to re-orient while jumping. 

As a result, researchers have worked to adapt these 
biological structures into bioinspired robotic systems and 
functionalities. Examples include biomimetic fish [1], snakes 
[2], kangaroos [3], jumping insects [4], terrestrial insects [5], 

dinosaurs [6], cheetah turning [7] and cheetah 
acceleration/deceleration [8].  

A key application of interest is how ground-based animals 
use their tails to aid in locomotion—specifically, maneuvering 
and stabilization. By using a tail to aid in these functionalities 
on-board a legged robot, the burden on the legs to 
simultaneously propel, maneuver and stabilize the robot would 
be reduced. Simplifications to the leg’s controlling algorithms 
would result, along with possible simplifications to the leg 
structures themselves. 

In this work, a two-segment serpentine robotic structure is 
chosen to implement the robotic tail for a variety of reasons: (1) 
to enable spatial tail motion, as opposed to the planar motion of 
a fixed single degree-of-freedom (DOF) pendulum; (2) to 
enable multiple tail mode shapes, as opposed to uniform 
bending in a single-segment hyperredundant structure; (3) to 
preserve a rigid-link structure to simplify modeling and future 
implementation of the design, as opposed to a continuum 
structure.  

In order to design a serpentine tail capable of generating 
the required loading to maneuver and stabilize a mobile robot, 
an accurate numerical model of the serpentine robot is needed. 
As a first step in this process, a static model is derived capable 
of calculating the resulting shape of a serpentine robot, as well 
as tensions within its actuating cables, based on the prescribed 
actuation cable displacements. Previous work in cable-driven 
robotics [9,10] has focused on utilizing these models primarily 
to predict the spatial shape of the robot, whereas this research 
focuses primarily on the dynamic loading generated by these 
systems. 

The paper is organized as follows: Section 2 presents 
background research in the fields of serpentine robotics and 
ground-based mobile robotic tails. Section 3 presents the 
design concept for the robotic tail, along with the two 
analytical models: a uniform-curvature kinematic model and a 
statics model. Section 4 discusses the numerical 
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implementation of the kinematic and statics models in 
MATLAB. Section 5 analyzes the impact of actuation, elastic 
and gravitational loading on the accuracy of the purely 
kinematic model  

2   BACKGROUND 
This section presents the previous research in the topics of 

serpentine robots and robotic tails. 

2.1   Serpentine Robots 
Serpentine robots are rigid-link robotic systems that are 

composed of a large number of distinct rigid-bodies (often 
identical) capable of bending in what appear to be continuous 
curves. They are distinguished from conventional rigid-link 
robots by the large numbers of DOFs, as well as the uniformity 
between the rigid bodies. They are distinguished from 
continuum robots by the lack of continuous elastic backbone.  

The primary application studied in the literature related to 
serpentine robots is snake-like locomotion [2,11,12]. In most of 
these structures, actuation is distributed along the length of the 
robot within each module, and each joint is individually 
actuated to enable terrestrial locomotion or climbing. In a tail-
like structure, this actuation structure is undesirable, because 
individual joint actuation is not a requirement, and the 
distribution of actuators along the robot will mandate an 
increase in the tail’s mass (as opposed to letting it remain a 
design variable). 

Medical applications, including diagnosis and surgery, 
have also been addressed using serpentine robots [13,14]. 
However, these robots operate on the meso-scale, in which 
elastic effects dominate in comparison to dynamic and 
gravitational effects, compared to the macro-scale tails under 
consideration in this paper. 

Serpentine robots have also been used in industrial 
applications for inspection of systems ranging from nuclear 
facilities to airplanes [15]. The design concept presented is 
similar to the design analyzed in this paper, with similar rigid 
links joined together by universal joints and actuated by 
cabling. However, these types of robots are designed to be 
fairly rigid, to minimize the impact of external loading on their 
shape during operation. The tail will need to be more agile, 
particularly toward the tip, to enable rapid dynamic motions to 
generate the required inertial loading.  

2.2   Ground Mobile Robotic Tails 
Previous research associated with mimicking biological 

tails on robots has focused on one- or two-DOF rigid-link 
pendulums [3–8,16,17]. In each case, the tail is designed to 
perform a specific function: yaw-angle steering [5,7,16], pitch 
angle modification [3,4], center-of-mass (COM) positioning 
[6], aiding in accelerating/decelerating [8] and propulsion [17]. 

However, in each case, the tail was designed to only 
perform a single function. In an actual system, though, it would 
be desirable for a tail to be able to perform several of these 
functions in a single structure. The spatial serpentine tail 

analyzed in this paper is capable of this desired multifunctional 
operation. 

3   TAIL DESIGN AND MATHEMATICAL MODEL 
This section presents the design concept for the serpentine 

tail, and two mathematical models for representing the 
serpentine tail: a uniform-curvature kinematic model, and a 
statics model.  

3.1   Design Concept 
Figure 1 shows an illustration of the serpentine tail design 

under consideration. The tail is composed of six universal 
joints along its links, with disks mounted between the joints 
and at the end of the tail to help route cabling. Six cables are 
used to actuate the robot: three defining segment 1, which 
terminate at the disk 3; and three defining segment 2, which 
terminate at disk 6. The actuation for the six cables is contained 
within the actuation module at the base of the tail, and this 
actuation module will be what is attached to a legged prototype 
in future work. 

 
Figure 1. Two-segment serpentine tail. 

 
Figure 2 shows a single subsegment between two disks. 

The two “halves” of the universal joint connect to the disks on 
either side, and are both connected by revolute joints to the 
universal joint “center” in the middle. The universal joint 
halves are rotated 90o with respect to one another to create the 
two orthogonal revolute joints defining the universal joint. 
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Figure 2. Serpentine tail subsegment. 
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In each subsegment i, the universal joint is oriented so that 
the first joint in the universal joint controls the vertical rotation 
(i.e., y-axis rotation, defined by the angle βi) and the second 
joint controls the horizontal motion (i.e., x-axis rotation, 
defined by the angle γi). However, if βi ≠ 0, the x-axis will not 
align with the x-axis at the base of the subsegment. 

For this tail, it is desirable to have ±90o range for each 
segment bending, so the joint angle range for each joint is set to 
±35o (to accommodate possible overshoot during dynamic 
motions studied in future analyses).  

Two pairs of antagonistic extension springs are used to 
create the elastic loading in the two orthogonal joints. When βi 
= γi = 0, the joints are equally pre-tensioned to result in a net 
zero elastic moment on each joint. When the joint displaces, the 
moment increases along a linear profile within the [-35o, 35o] 
joint angle range.  

3.2   Tail Kinematics 
For each subsegment i, there are two key frames of 

reference needed for subsequent calculations: the joint center 
frame Rjnt,i and the disk frame Rdsk,i. These frames are 
calculated by first calculating the local frames within each 
subsegment, then recursively calculating the frames from the 
base to the tip. Equation (1) shows the calculation of the local 
frames Rjnt,i,lcl and Rdsk,i,lcl, and Eq. (2) shows the recursive 
calculation of the global frames Rjnt,i and Rdsk,i. 
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Using these rotation matrices, the centroid positions of the 
joint centers pjnt,i and disks pdsk,i can be calculated using Eq. (3): 
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where Ldsk2jnt is the distance from the subsegment’s ‘base’ disk 
to the joint center, and Ljnt2dsk is the distance from the joint 
center to the subsegment’s ‘tip’ disk.  

In order to define the tail kinematic model governing 
equations, calculations for the actuation cable lengths Lcbl,j,k for 
cable k terminating in segment j are needed. 

Because they terminate in different segments, each cable 
does not necessarily pass through all six subsegments. The 
cables terminating in segment 1 only pass through subsegments 
1-3, whereas the cables terminating in segment 2 pass through 
subsegments 1-6. In the following derivations, the subsegment 
index i will iterate from 1:3 if the segment index j = 1, or will 
iterate from 1:6 if the segment index j = 2.  

The local position phl,j,k,lcl of each routing hole depends on 
the segment j in which the cable terminates and the specific 
cable k terminating there. In Fig. 2, the holes in the ‘tip’ disk 
are labeled j-k, corresponding to the specific cable that passes 
through that hole. Equation (4) defines the coordinates 
mathematically, where rh is the cable routing hole radius. 

   

   
,

, , , , ,

1 *180 1 *120

cos sin 0p

o o
j k

T

hl j k lcl h j k j k

j k

r



 

   

   
 (4) 

The position phl,i,j,k relative to the base frame of the 
segment j, cable k routing hole in disk i, is calculated using Eq. 
(5):  

, , , , , , , ,p p R phl i j k dsk i dsk i hl j k lcl   (5) 

Using phl,i,j,k, the hole-to-hole position vectors ph2h,i,j,k are 
calculated using Eq. (6), with a slight modification for the first 
subsegment, given that the actuation module precedes it: 
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The subsegment cable lengths Lh2h,i,j,k are the magnitudes of 
ph2h,i,j,k, as shown in Eq. (7), and the summation of these 
subsegment lengths for the corresponding number of 
subsegments (3 when j = 1, or 6 when j = 2) is the total 
actuation cable length Lcbl,j,k in the given configuration, as 
shown in Eq. (8). 
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3.3   Tail Kinematic Model Governing Equations 
The key simplifying assumption for the purely kinematic 

model is that in each segment, the three βi angles are equal and 
the three γi angles are each equal, ensuring uniform bending 
along each segment defining the tail. As a result, the model can 
be defined by four DOFs: βA, βB, γA and γB, where βA = β1 = β2 = 
β3, βB = β4 = β5 = β6, γA = γ1 = γ2 = γ3 and γB = γ4 = γ5 = γ6. 

The four governing equations for the model derive from 
specifying two desired actuation cable lengths Lcbl,j,k,des for the 
triplet of cables terminating in each segment. For example, in 
segment 1, the lengths of cables 1 and 2, 2 and 3, or 3 and 1 
can be specified. Conventionally, the cables for which the 
displacements are specified will be the cables in tension. 
However, neither model requires this. Equation (9) 
mathematically defines the four governing equations for the 
model. The choice of form for these governing equations is to 
aid in numerical implementation in Section 4. 
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3.4   Tail Statics Model Governing Equations 
For the two-segment, six subsegment tail shown in Fig. 1, 

there are 16 DOF: six βi angles, six γi angles, and four cable 
tensions. Therefore, 16 governing equations are needed.  

Twelve of the governing equations will be static 
equilibrium equations at each of the 12 joints along the robot. 
By definition, in static equilibrium, a revolute joint cannot 
support a moment aligned with its axis of rotation. Therefore, 
the dot product between the internal moment Mint,i,h at the joint 
and the joint’s axis of rotation should be zero, as shown in Eq. 
(10). The subscript h corresponds to either the β joint (h = 1) or 
the γ joint (h = 2). 
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Section 3.5 describes the recursive calculation of the 
internal moments (and associated internal forces) from the tip 
of the tail to the base. Sections 3.6, 3.7 and 3.8 describe the 
calculations associated with the gravitational, elastic and 
actuation loading, respectively, that are used to calculate the 
internal loading. 

The other four governing equations will be the cable 
displacement compatibility equations used in the kinematic 
model and defined in Eq. (8). In the kinematic model, those 
equations are used to calculate the four joint angles that define 
the kinematic configuration of the robot. In the statics model, 
those equations are used to constrain four of the joint angles so 
that the static equilibrium equations can also be used to 
calculate the required actuation loading, and as a result, the 
cable tensions.  

3.5   Internal Loading 
The internal loading carried through the robot is the force 

and moment transmitted from joint-to-joint from the tip of the 
robot (where the internal loading is zero) to the base. It is 
calculated recursively beginning at the subsegment 6 (i = 6) γ-
joint (h = 2), moving back to the subsegment 6 β-joint (h = 1), 
then to the subsegment 5 (i = 5) γ-joint (h = 2), and following 
the same pattern until the base is reached. 

The sum of the forces acting on the disk assembly 
constitute the internal force Fint,i,2 for the γ-joint, calculated in 
Eq. (11), and the sum of the forces acting on the joint center 
constitute the internal force Fint,i,1 for the β-joint, calculated in 
Eq. (12). For all Fint,i,h except Fint,6,2, the subsequent joint’s 
internal forces is included in the internal force calculation, 
because the effect of the internal force from the tip to the base 
is cumulative.  
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,1 ,2 , , , , ,F F F Fint,i int,i grv jnt i sp tot i h    (12) 

Most of the forces will also generate a moment with 
respect to their associated joints. The exception is Fgrv,jnt 
because its point of application lies on the β-joint axis. The 

resulting internal moments due to these loading effects for the 
γ-joints (Mint,i,2) are calculated in Eq. (13), and the internal 
moments for the β-joints (Mint,i,1) are calculated in Eq. (14). 
However, in the computation of these internal moments, three 
additional terms have been included and will be explained in 
the following two paragraphs. 
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,1 ,2 , , ,2M M Mint,i int,i el tot i   (14) 

The final term in the i < 6 case of Eq. (13) accounts for the 
moment generated by the subsequent joint’s internal force. It is 
calculated in Eq. (15). 

 , , 1 , 1,1M p p FF_int i jnt i jnt i int,i     (15) 

3.6   Gravitational Loading 
Along the tail, there are three types of bodies contributing 

to the gravitational loading: the joint center assemblies (mass: 
mjnt), the five whole disk-assemblies along the tail (mass: 
mdsk,whl), and the half disk-assembly at the tip of the robot 
(mass: mdsk,hlf). The gravitational forces Fgrv,jnt,i and Fgrv,dsk,i 
associated with these bodies are defined in Eq. (16), where g is 
gravitational acceleration: 
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However, based on the design of the tail’s subsegments, 
the disk assembly COM may not intersect with the disk center 
(this is obvious for the half disk-assembly). As a result, the disk 
COM position pCOM,dsk,i should be calculated using Eq. (17), 
where LCOM,dsk,i is the distance from the γ-joint axis of rotation 
to the disk assembly COM. 

 , , , , , , 0 0 1p p R
T

COM dsk i jnt i COM dsk i dsk iL   (16) 

Using this COM position, the moment due to Fgrv,dsk,i can 
be calculated using Eq. (17). 

 , , , , , , ,M p p Fgrv dsk i COM dsk i jnt i grv dsk i    (17) 

As discussed in Section 3.5, because the joint center COM 
intersects the β-joint axis of rotation, there is no moment 
associated with the joint center weight. 

3.7   Elastic Loading 
In each subsegment, there are four pairs of spring 

attachment points. The position vector between each pair in 
which a spring is mounted defines both the spring force 
magnitude (based on the spring’s displacement from its 
unloaded position) and direction (based on the position’s unit 
vector).  
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In order to calculate the displacement between these spring 
anchor points, their positions need to be defined with respect to 
the nearest disk or joint center. For a given subsegment i, there 
are four pairs of anchors along the length of the subsegment. 
Table 1 describes the four spring attachment point pair 
displacements psp,h,n,q,lcl, where h is the associated joint, n is the 
associated spring and q is the first or second attachment point 
relative to the base. Table 1 also specifies the position to which 
this local displacement is relative. In each case, when n = 1, rsp 
is positive, and when n = 2, rsp is negative. 
 

Table 1. Local spring attachment points 

Local Displacement: Relative To: 
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T
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T
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Using these local displacements, the global spring 

attachment positions psp,i,h,n,q can be calculated using Eq. (18).  
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The positon vector for spring n associated with joint h in 
subsegment i is psp,i,h,n and is defined in Eq. (19). 

, , , , , , ,2 , , , ,1p p psp i h n sp i h n sp i h n   (19) 

The spring lengths Lsp,i,h,n and unit direction vectors 

, , ,p̂sp i h n  are calculated using Eq. (20). 
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ˆ,p p psp i h n sp i h n sp i h n sp i h n sp i h nL L   (20) 

The spring force magnitude Fsp,i,h,n depends on the 
displacement of the spring from the unloaded length Lsp,0, the 
spring constant ksp,i and the pre-tension Fsp,pre,i, as shown in Eq. 
(21). 
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Each side q of spring n associated with joint h in 
subsegment i will apply a force Fel,i,h,n,q to either the disk 
assembly (when q = h) or joint center (when q ≠ h), as defined 
in Eq. (22). 
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The spring forces when [h,q] = [1,1] and [2,2] will 
contribute to the total force Fel,tot,i,2 and moment Mel,tot,i,2, and 

the spring forces when [h,q] = [1,2] and [2,1] will contribute to 
the total force Fel,tot,i,1 moment Mel,tot,i,1. Each of these is defined 
in Eqs. (23) and (24). 
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3.8   Actuation Loading 
The actuation loading will be formulated in a similar 

manner to the cable loading in [18]. Continuing from the 
analysis in Section 3.2, using the hole-to-hole vectors and 
subsegment cable lengths, the unit vectors associated with the 
cable actuation forces can be calculated using Eq. (25).  

2 , , , 2 , , , 2 , , ,p̂ ph h i j k h h i j k h h i j kL  (25) 

In the statics model, the four non-zero cable tensions Tj,k 
represent four of the model’s DOF. However, during the 
iterative calculations, the current tension values are available to 
the solver for use in calculations, similar to how the current 
joint angles are available for use in calculations. Therefore, the 
actuation forces Fact,i,j,k acting on disk-assembly i from cable j 
at hole k are defined in Eq. (26). In this model, friction is 
neglected. 
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The actuation forces will only explicitly contribute to the 
internal forces and moments associated with the γ-joint, as 
shown in Eq. (11) and (13). The resulting calculations for 
Fact,tot,i and Mact,tot.i are shown in Eqs. (27) and (28). 
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4   NUMERICAL IMPLEMENTATION 
This section discusses the numerical implementation of the 

kinematic and statics models in MATLAB. 

4.1   Kinematic Model MATLAB Implementation 
A two-stage solver is used to solve the uniform-curvature 

kinematic model defined in Section 3.3. 
In the first stage, only the segment 1 joint angles (βA and 

γA) and governing equations (Lcbl,1,k,des – Lcbl,1,k = 0) are 
considered. Because the two calculated cable lengths Lcbl,1,k are 
defined only by βA and γA and Lcbl,1,k,des is prescribed as an 
input, the two segment 1 joint angles may be solved for 
independent of βB and γB. MATLAB’s ‘fsolve’ function is used 
to solve for βA and γA by iteratively driving the difference 
between the desired and calculated cable lengths to zero 
through modifications to the two angle inputs. 

In the second stage, the calculated values of βA and γA are 
set as constants in the solver, and a similar process using 
‘fsolve’ is performed to iteratively calculate βB and γB using the 
second pair of governing equations in Eq. (9). 

4.2   Statics Model MATLAB Implementation 
As with the kinematic model, ‘fsolve’ was used to find an 

acceptable set of the 16 DOF that would result in static 
equilibrium in the 12 joints (Eq. (10)) and valid compatibility 
conditions (Eq. (9)).  

Two challenges arose when implementing the statics model 
described in Section 3.4: (1) how to enforce the joint angle 
limits; and (2) how to change the tensioned cables during 
simulation. 

To address challenge (1), three approaches were 
considered for implementing the joint angle limits: (a) include a 
high-stiffness non-linear spring in the model that would engage 
when a joint angle exceeded ±35o, or (b) utilize a numerical 
solver that allows joint angle limits to be specified, or (c) DOF 
reduction (when a DOF is driven past its joint angle, it is 
removed from the optimization and replaced by the upper or 
lower limit in subsequent calculations). 

Approach (a) was attempted, but led to convergence issues 
due to the highly nonlinear behavior of the spring. Approach 
(b) was undesirable, because the convergence properties of the 
‘fsolve’ algorithm are superior to any built-in MATLAB 
functions that allow for upper and lower bounds on the DOF 
vector. Therefore, approach (c) was implemented.  

Using this approach, for the first iteration, the statics of the 
robot are calculated like normal. Then, the output vector is 
evaluated to see if any joint angles exceed the upper or lower 
bounds. As soon as one does, it is removed from the DOF 
vector, its value is fixed at the upper or lower bound, and the 
simulation is re-run with one fewer DOF. This process is 
repeated until all joint angle elements of the DOF vector fit 
within the upper and lower joint angle bounds. 

Challenge (2) arises because for some values of spring 
stiffness and the distributed mass, the cables that would tension 
a set of cable lengths for the shape resulting in a purely 

kinematic model (the initial guess for the static solver solution) 
do not necessarily actuate the final solution. As a result, in 
some cases, negative tensions were calculated in cables, which 
is not possible. 

To address challenge (2), instead of utilizing the four 
tensions as the DOF, two magnitude/angle pairs (Mj and ϕj) are 
used to specify the actuation for the cables terminating in 
segments j = 1,2. The magnitude Mj represents the magnitude 
of the moment generated by the mutual action of the one or two 
non-zero tensions, and the angle ϕj represents the angle of 
rotation of the moment axis. 

The angle ϕj controls which cables will have non-zero 
tensions, as shown in Table 2. 
 

Table 2. Non-zero cable tensions due to ϕj 

Angle Non-Zero Tension Angle Non-Zero Tension 
0o Cable 1 (0o,120o) Cables 1 and 2 
120o Cable 2 (120o,240o) Cables 2 and 3 
240o Cable 3 (240o,360o) Cables 3 and 1 
 

For cases in which only one cable tension is non-zero, the 
cable tension can be calculated by dividing Mj by rh.  

For cases in which there are two non-zero tensions, the 
tensions are calculated by taking the sum of the cross products 
of phl,j,k,lcl (the local hole position vector) and [0, 0, Tj,k] for the 
two non-zero tensions and equate this to Mj [sin ϕj, cos ϕj,, 0]. 

This will result in two non-trivial equations that can be 
used to solve for the two non-zero tensions for each segment. 

5   RESULTS 
This section analyzes the impact of actuation, elastic and 

gravitational effects on the accuracy of the purely kinematic 
model as a substitute for the static model.  

Table 3 provides the baseline parameters used for the 
numerical simulations. In the following simulations, these 
parameters will be used unless specifically overridden.  
 

Table 3. Tail simulation parameters 

Variable Value Variable Value 
Ldsk2jnt 40 (mm) Ljnt2dsk 40 (mm) 
LCOM,dsk,{1-5} 0 (mm) LCOM,dsk,6 8.45 (mm) 
rh 34 (mm) rsp 5.94 (mm) 
dsp,jnt 5.77 (mm) dsp,dsk 4.77 (mm) 
mdsk,whl 58.3 (g) mdsk,hlf 44.35 (g) 
mjnt 10.91 (g) Lsp,0 25.4 (mm) 
ksp,{1-3} 7500 (N) ksp,{4-6} 2500 (N) 
Fsp,pre,{1-3} 0 (N) Fsp,pre,{4-6} 0 (N) 

5.1   Actuation Effects 
Figure 3 compares the kinematic and static model 

configurations for various sets of desired cable lengths leading 
to parallel bending of segments 1 and 2. The cable 
displacements were calculated varying the angle in each β-joint 
from 0o to 30o in 5o increments. Given this method of 
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determining the desired cable lengths, the kinematic model 
results in tail configurations with uniform joint angles along the 
length, with the straight configuration correlating to the βi = 0o 
case and the half-circle configuration correlating to the βi = 30o 
case .  
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Figure 3. Comparison of configurations from kinematic and 

statics models for cooperative segment bending. 
 
Due to the interaction between the gravitational and elastic 

effects, the static configuration correlating to the βi = 0o 
kinematic model case exhibits significant ‘sag’. If the springs 
were infinitely rigid, the static and kinematic cases would be 
equivalent. However, because the joints must deflect to 
generate an elastic moment to counter the gravitational 
moment, the static model sags. 

However, unlike a conventional cantilevered beam, the 
joint angles are not all of the same sign in this configuration 
due to the prescribed cable displacements. In the kinematic 
case for βi = 0o, the total segment joint angle in each of the two 
segments is 0o. Therefore, the sum of these joint angles in the 
static case should also approximate zero (the cable 
displacements due to positive vs negative joint angle are not 
precisely equal and opposite). Therefore, in the first segment, 
because the gravitational loading is greatest on joint β1, it will 
be negative. And because the segment 1 actuation loading is 
applied primarily on joint 3, β3 is positive. 

However, as the cable displacements increase, the static 
model configuration more and more closely resembles the 
kinematic configuration. This is due to two factors: (1) 
reduction of gravitational moment, and (2) joint angle 
constraints.  

The reduction of the gravitational moment begins to occur 
after the third shown configuration (kinematic βi = 10o). In this 
case, the tail is almost fully extended (albeit slight sagging in 
the two segments). However, in the subsequent configuration 
(kinematic βi = 15o) the center of mass of the tail has moved 
toward the base instead of away. As the tail continues 
increasing its curvature, this continues, reducing the 
gravitational moment. 

In addition, the joint angle stops aid in transmitting internal 
loading along the tail. When a joint is not at its limit, the joint’s 
internal moment is required to be zero by static equilibrium. 
However, when at a joint limit, this is not true.  

Beyond simply analyzing the configurations, Figure 4 
illustrates the cable 1-1 tension associated with each static 
configuration. The cable tension provides the loading to 
overcome the net effect of the gravitational and elastic loading. 
As shown, the tension increase until the kinematic βi = 15o, 
then suddenly decreases. In Fig. 3, between βi = 15o and 20o, 
the tail tip bends back over the tail. When this happens, the disk 
6 gravitational force begins to aid in the subsegment 6 bending 
instead of opposing it. This reduces the loading on the 
actuation to maintain the desired configuration, resulting in a 
reduced cable tension.  
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Figure 4. Cable 1-1 tension profile for parallel actuation. 
 
The profiles for cables 2-2 and 2-3 are similar in shape, but 

differ in magnitude. For example, for the kinematic βi = 0o 
case, the cable 1-1 tension is 14.36 N, but the cable 2-2 and 2-3 
tensions are 1.89. The order of magnitude difference between 
these values is because segment 1’s actuation supports the mass 
of segments 1 and 2 through the internal force transmitted from 
joint to joint, whereas segment 2’s actuation only supports the 
mass in segment 2. However, the trade-off is that the second 
segment cables are subject to greater displacements, because 
the cables pass through six subsegments instead of three.  

Figure 5 compares the kinematic and static model 
configurations for antagonistic bending of segments 1 and 2. 
The β1-3 angles are the same in this simulation as the parallel 
configuration simulations in Fig. 3, and the β4-6 angles are 
equal and opposite to the values for the simulations in Fig. 3.  
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Figure 5. Comparison of configurations from kinematic and 

statics models for antagonistic segment bending. 
 
A similar pattern is seen for this set of simulations and 

those in Fig. 3, where the low-actuation static cases exhibit 
significant sag and variation from the kinematic model, but 
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become more accurate as actuation increases. However, even at 
lower actuations, because the second segment’s desired 
bending is the same direction as the bending due to gravity, the 
accuracy is improved further still.  

During these simulations, a change in the cables tensioned 
is also observed in the second segment. Figure 6 illustrates the 
segment 2 cable tensions. Between β1-3 = 10o and 15o, cables 2-
2 and 2-3 transition to zero tension and cable 2-1 engages. For 
β1-3 = 10o and below, the actuation was primarily acting against 
gravity to hold the tail configuration. However, for β1-3 = 15o 
and above, the actuation is primarily acting against the segment 
elasticity.  
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Figure 6. Segment 2 cable tensions for antagonistic actuation 

loading. 

5.2   Elastic Effects 
Figure 7 shows the impact of spring stiffness on the tail 

configuration. For the segment 1 variation, the spring stiffness 
was varied from 4500 N/m to 16500 N/m in 3000 N/m 
increments, and for the segment 2 variation, the spring stiffness 
was varied from 1000 N/m to 7000 N/m in 1500 N/m 
increments. Cable displacements match the βi = 0o case in Fig. 
3. 
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Figure 7. Change in zero-displacement configurations due to 

spring stiffness variation in segments 1 and 2. 
 
In each case, as the stiffness is increased, as expected, the 

static result becomes more straight. However, the marginal 
benefit of increase the stiffness decreases as the stiffness 
increases. Although not the focus of the analysis at this stage, 
the downside to increasing the spring stiffness is that it will 
reduce the tail’s maximum accelerations for a prescribed cable 
displacement, thereby reducing its inertial loading capability. 

Furthermore, in the second segment, increasing the 
stiffness also tends to increase the gravitational moment 
loading on segment 1, thereby increasing β1 and further sagging 
the tail. 

5.3   Gravitational Effects 
Figure 8 shows two sets of simulations for different 

modifications for the subsegment mass. βi = 45o case in Fig. 3. 
In the left frame, the mass of each disk assembly (both whole 
and half) was increased by the same amount, correlating to an 
increase in the mass of the disk. In the right frame, additional 
mass was only provided at the half disk-assembly (i.e., disk 6) 
at the tail tip. For the distributed mass, the amount added to 
each disk varied from 0 g to 20 g , in 5 g increments (total 
added mass varied from 0 g to 120 g in 30 g increments). For 
the tip mass, the amount added to disk 6 varied from 0 g to 100 
g in 25 g increments.  
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Figure 8. Change in configurations due to tail mass variation (a) 

distributed along length and (b) at tip. 
 
As shown, the marginal effects of adding the given 

distributed mass or tip mass are the same, despite the difference 
in the total amount added.  

However, in each case, each simulation converges to the 
same final configuration, due to the joint limits. In the extreme 
cases (20g x 6 disks, or 100 g at the tip), joints 1 and 4 are both  
-35o and joints 3 and 6 are both 35o. In each segment, this 
leaves one DOF for joint 2 or 5, and one DOF for the cable 
tension. Therefore, because the cable length constraint only 
incorporates the joint angles, in segment 1, the joint 2 angle is 
analytically calculable because joints 1 and 3 are known, and 
the cable tension can be calculated from the single static 
equilibrium equation. This is also true for segment 2. 
Therefore, once four joint angle limits are reached, the only 
modification effected by adding more mass is to increase the 
cable tensions.  

6   CONCLUSION 
This paper presented kinematic and static models for a 

serpentine tail structure capable of calculating the resulting 
joint angles (both models) and cable tension (static model) 
given a prescribed set of desired actuation cable displacements. 
Simulations were generated to analyze the impact of actuation, 
elastic and gravitational effects on the tail configuration and 
cable tensions, including the correlation between the kinematic 
and static models. 

Future work will incorporate inertial effects into the static 
model to make it a dynamic model, and will use this model to 
aid in the design of a serpentine tail for use on-board a mobile 
robot to aid in maneuvering and stabilization. The prototypes 
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resulting from these designs will be used in part to 
experimentally validate this and future associated work. 
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