
A Framework for Modeling Closed Kinematic Chains with a Focus on
Legged Robots

Vinay R. Kamidi1, Adam Williams1 and Pinhas Ben-Tzvi2, Senior Member, IEEE

Abstract— This paper presents the foundations of a MATLAB
framework for dynamic modeling and simulation of closed
kinematic chain (CKC) mechanisms, with a particular focus
on implementation with legged locomotive mechanisms. As
such, the framework supports both floating-base and fixed-
base systems. Through the use of singular perturbation theory,
various CKC mechanisms can be modeled so that constraint
errors asymptotically converge to zero, thus avoiding the nu-
merical drift that plagues commonly used methods. A functional
API and the relevant core commands necessary to construct
a model are presented. Two robotic legs incorporating CKC
mechanisms are utilized as case studies, and simulations of
each leg performing a dynamic monopedal gait are illustrated.

I. INTRODUCTION
In dynamic environments and applications, CKC mecha-

nisms are advantageous due to their superior performance as
a consequence of the high rigidity these structures exhibit.
Moreover, CKC mechanisms often result in lightweight
architectures and as a result, a surge of CKC mechanisms
can be found in a variety of fields [1]–[3]. However, the
lack of robust foundational tools for modeling these mecha-
nisms serves to create a barrier to systematic analyses, and
therefore to even more widespread implementation, of CKC
mechanisms. Our work thus aims to provide the community
with a toolbox for handling the dynamics of CKC robots and
enabling further adoption of these versatile systems in new
and innovative applications.

A notable field in which CKC mechanisms provide sig-
nificant benefits in design and operation is that of legged
locomotion. High-profile legged robots that exhibit such
structures include the KAIST Raptor [4], Minitaur [5], Super
Mini Cheetah [6], SALTO [7] and ATRIAS [8]. Additionally,
the author’s Bio-inspired One-degree of freedom Leg for
Trotting (BOLT) [9] incorporates CKCs, as seen in Fig.
1(a). These systems are all highly dynamic in nature and
as such warrant extremely high torque motors. However, the
inclusion of such large motors can lead to an unfortunate
cycle in which the larger motors increase the system mass,
thus requiring ever larger motors. The inclusion of CKCs
enable proximally located actuation and exhibit high rigidity-
to-weight ratios, thus reducing the reflected mass of the
leg and aiding in fast locomotion. If a CKC consists of a
parallelogram linkage geometry, such as that of ATRIAS,

*This material is based upon the work supported by the National Science
Foundation under Grant No. 1557312

1The authors are with with the Robotics and Mechatronics Lab at Virginia
Tech, Blacksburg, VA, USA. {vinay28,aw13}@vt.edu

2 P. Ben-Tzvi is with the Department of Mechanical Engineering, Virginia
Tech, Blacksburg, VA, USA. bentzvi@vt.edu

Fig. 1. (a) Bio-inspired One-degree of freedom Leg for Trotting (BOLT)
(b) Portion of the hybrid dynamic cycle for a simulated monopedal running
gait performed by BOLT.

it may be simplified to an open kinematic chain (OKC)
model using common modeling methods. Once in OKC
form, modeling can be conducted through any number of
methods or softwares. However, for any other construction,
modeling becomes highly implicit [10] due to the mecha-
nism’s characterization by a differential algebraic equation
(DAE). The difficulties modeling DAEs and implementing
them in real-time, model-based controllers is well docu-
mented [11]. For instance, while one can create models in
commercial modeling software such as MSC ADAMS, real-
time implementation requires plant dynamics that cannot be
extracted from the software and therefore restricting its use
to simulation environments.

Previously implemented packages for dynamic modeling
of kinematic chains have primarily focused on OKCs. Promi-
nent examples of such packages include proNEu, DRAKE,
and FROST [12]–[14]. These packages have varying use
cases, including legged locomotion. However, none of these
platforms are equipped for efficient analysis of CKCs, and
in some cases have no capability to model them at all. The
closest one comes to achieving this is FROST, which models
CKCs using the Lagrangian multiplier method. However,
this method is prone to introduce numerical drift into the
constraints, which can accumulate over time and thus cause
the constraint to stray from its defined position.

While the numerical drift present in the commonly used
modeling approaches can be addressed through methods
such as Baumgarte’s, this further increases complexity and
requires parameter tuning [15]. Such intricacies render
these approaches unfit for real-time co-simulation, model-
based control, and field implementations; all domains into

2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Madrid, Spain, October 1-5, 2018

978-1-5386-8093-3/18/$31.00 ©2018 IEEE 2733

which legged robotic research is progressing. In response to
these challenges, Singular Perturbed Formulation (SPF) [16]
presents a superior approach. This method, when applied to
CKCs, results in computationally lightweight modeling that
asymptotically drives constraint drift to zero.

In this paper, a framework for modeling CKCs through the
application of SPF is presented1. The methods are general-
ized for n-loop CKC modeling, and presented in a format
conducive to dynamic modeling in research. The package is
implemented in MATLAB due to its widespread use by aca-
demics. Direct knowledge of mechanism kinematics through
precise modeling using the proposed framework can enable
effective optimization of robot architectures. Minimal drift
modeling will allow researchers to not only simulate their
mechanism, but to use the tool as a sandbox for developing
control architectures for robots implementing CKCs. For
instance, controllers targeting the instability arising in CKC
leg structures can be explored by enabling access to the full
state of the robot through the accurately simulated dynamics.
While the package is in active development to accommodate
or port with software that supports OKC structures to achieve
completeness, the authors are presenting in the hope that
fellow researchers can benefit by allowing their focus to be
on open problems in the CKC domain beyond dynamics.

In Section II of the paper, the underlying mathematics
behind SPF are introduced, along with a short explanation of
application of SPF to kinematic chains. Section III describes
the package API and provides the core commands necessary
to develop a dynamic model. This is followed by case
studies in Section IV that demonstrate the framework on two
CKC mechanisms, with the future plans for the framework
concluding the paper in Section V.

II. MATHEMATICAL FOUNDATION OF SINGULARLY
PERTURBED FORMULATION

The presented framework utilizes SPF in order to model
the dynamics of closed kinematic chains. The method uses
well-known Lagrangian method to develop basic dynamic
equations, then approximates the algebraic constraint rela-
tions as ordinary differential equations (ODEs). Modeling
of the system can then be performed through solution of a
system of reduced order ODEs, rather than DAEs. Applica-
tion of SPF results in a final system of equations of order
corresponding to the active degrees of freedom.

A. First Order Dependencies

To arrive at a set of equations that characterize the system
as a DAE, the first step is to separate the mechanism virtually
[17]. The goal of virtual separation is to ”cut” the mechanism
into a minimal number of open or branched kinematic chains.
An example is shown on the four-bar mechanism in Fig.
2. The separation point is seen in Fig. 2(b), labeled as e.
Following separation, the resultant mechanism consists of
two open-chain structures, shown in blue and red along with
their respective link variables and angles with respect to the

1The framework is available at https://github.com/RM-Lab/
CKC_Framework

Fig. 2. Illustration of the virtual separation method on a (a) four-
bar mechanism. (b) Identification of two distinct links and selection of a
separation joint. (c) Two OKC chains are formed that can be modeled using
existing methods.

horizontal in Fig. 2(c). In this case, the kinematic constraint
relationships should satisfy the relation e0 = e1, in the planar
frame. This is mathematically shown in (1)[

l1 cos(θ1)+ l2 cos(θ2)− l3 cos(θ3)
l1 sin(θ1)+ l2 sin(θ2)− l3 sin(θ3)

]
=

[
0
0

]
(1)

Following application of virtual separation, the generic
DAE that describes the system dynamics can be generalized
by (2).{

H′(qd)q̈+C′(qd, q̇d)q̇d +g′(qd) = Bτ +Fext

φ(qd) = 0
(2)

where qd is the combination of independent and dependent
variables required to completely describe the configuration
space of a CKC, H′(qd)∈Rnqd×nqd represents the generalized
positive definite mass matrix, C′(qd, q̇d) ∈Rnqd contains the
Coriolis and centrifugal terms, g′(qd) ∈ Rnqd is the gravi-
tational term, B is the torque distribution matrix, τ ∈ Rnqd

is the torque vector provided by the actuators, Fext is the
external force mapped to the joint space, and φ(qd) contains
the algebraic relations that encode the constraints. Further, q
is a set of independent variables and the significance of the
need of a separate vector is made clear later in this section.
Note that the ′ indicates the presence of dependent variables
in the corresponding matrix.

The encoding of the algebraic constraints as ODEs are the
driving motivation behind this method. Our primary goal is
then to eliminate the coupling of the dependent variables
in order to explicitly calculate the first order terms and
remove the second order terms. Therefore, we divide the
independent and dependent variables into q and z vectors,
respectively. The first and second order dependencies are
handled separately, with the initial focus on the first order
coupling. To do so, we introduce a variable, w := φ(qd),
which records the constraint error. As w is a virtual variable,
its inherent dynamics are flexible. Therefore, ẇ is chosen
such that w is asymptotically driven to zero through relation:

ẇ =−1
ε

w (3)

where ε is a small quantity greater than 0. This then has
the effect of driving the constraint error to exponential zero,
controlled by the value of ε . By substituting and applying
the definition of w to (3), the relation becomes:

ż =−J−1
z

(
1
ε

φ(qd)+Jqq̇
)

(4)

2734

where Jz and Jq are the Jacobians corresponding to the de-
pendent and independent variables, respectively. This equa-
tion encapsulates the SP dynamics, enabling the explicit
calculation of ż and driving the constraint error to zero.

B. Second Order Dependencies

While the first order dependent states are explicitly calcu-
lated in the SP dynamics, the second order dependent states
must still be dealt with. First, two selector matrices, Sq and
Sz, are utilized to encode the relation between q and z, such
that [q z]T = [Sq Sz]

T . Next, two dimensionality reduction
terms, Γ(qd) and ρ(qd), are introduced such that:

Γ(qd) :=
[

φ(qd)
Sq(qd)

]
−
[

0
q

]
(5)

and utilizing Γqd(qd) = ∂Γ(qd)/∂qd.

ρ(qd) := Γqd(qd)
−1
[

0
Inq×nq

]
(6)

Utilizing these terms, dimensionality reduction is achieved
through the application of the following relations.

H(q,z) = ρ(qd)
T H′(qd) (7a)

C(qd, q̇d) =ρ(qd)
T C′(qd, q̇d)ρ(qd)+

ρ(qd)
T H′(qd)ρ̇(qd, q̇d)

(7b)

g(qd) = ρ(qd)
T g′qd (7c)

The resulting real coordinate spaces H(qd) ∈ Rnq×nq ,
C(qd) ∈ Rnq×nq , g(qd) ∈ Rnq×nq do not contain second
order coupling terms. Combining these with the explicitly
calculated first order dependent terms from (4) give the
approximated ODE dynamic model for a CKC in (8). The
mathematical model is illustrated in Fig. 3.[

H(q,z) 0nq×1
0nz×1 Jz(q,z)

][
q̈
ż

]
=

[
C(q, q̇,z, ż)q̇−g(q,z)+Bτ

− 1
ε

φ(q,z)−Jq(q,z)q̇

]
(8)

III. IMPLEMENTATION AND FRAMEWORK API

In order to input a model into the presented framework,
it is first necessary to determine several requisite physical
quantities, such as link lengths, mass properties, constraint
equations, actuated and unactuated joints, and the initial state
variable conditions. Additionally, the user must determine the
virtual separation points and the corresponding kinematic
relations. The output from the package is a MATLAB
function file that encapsulates the code necessary to conduct
a dynamic simulation of the mechanism, when coupled with

Fig. 3. Intricacies of the CKC dynamics in the SP Formulation. The
modular nature of this method allows explicit calculations of the dependent
first order terms, ż, which are passed to the general dynamic ODEs that
determine the system dynamics in reduced order form.

a controller. If users so choose, the option is present to output
the general and SP dynamic functions for implementation in
other platforms or softwares.

A. Hybrid Dynamic Modeling

The SP formulation supports both fixed- and floating-base
dynamics, and as such the framework here has the capacity to
model both. However, the nature of floating-base dynamics
warrants extra treatment that is provided by a hybrid dynamic
modeling approach, similar to that found in [18].

Hybrid systems are characterized by behavior that can be
divided into continuous and discrete dynamic states. In the
case of a leg mechanism, when the leg is not in contact
with the ground it is considered to be in the flight phase,
while during contact the leg is in the stance phase. Both are
continuous states. The transition between the two continuous
phases is triggered by a discrete event, i.e. contacting or
leaving contact with the ground. Modeling such dynamic
systems can be achieved through the application of a state
machine, where the continuous dynamics are treated as
individual states that are switched between when a discrete
trigger occurs.

In order to model floating-base dynamics in the presented
package, the user can input any number of continuous states
along with their corresponding uni-directional switching
conditions. Using the example of a monopod hopper with
point feet, the hybrid system is represented by the tuple,
H = (D,S,∆,F), where D is the set of continuous states D f
and Ds, corresponding to the flight and stance respectively,
S is the switching condition, ∆ is the reset map, and F is
the evolved initial conditions, all of which have the same
inclusive sets as D. Thus given the switching conditions,
S, the framework can then utilize the input mechanism
properties to determine the unknowns in H in every cycle.

B. Core API Classes

The system dynamics are captured through the implemen-
tation of a series of core classes within the package.

Continuous Dynamics: The general dynamics of the system
are contained by the class ContinuousDynamics in
the package. The continuous states as described above are
modeled using this class within the hybrid framework imple-
mentation. Each state has its inherent dynamics determined
via the application of the Lagrangian formulation, calculated
on the virtually separated model. The ODEs determined
through the Lagrangian formulation are equal in number
to the number of links present in the provided mechanism,
nqd . The ODEs are coupled with the constraint equations
provided by the user to arrive at the general DAE, (2).
Additionally, the separation of the system variable vector,
qd, into its independent, q, and dependent, z, component
vectors is implemented.

In order for the DAE to be approximated as a series of
ODEs through the application of SPF, a FastDynamics
sub-class is introduced. Within this sub-class, the constraint
equations are abstracted by w, and the chosen dynamics are

2735

imposed upon the system of equations, as in (3). The value
of ε can be adjusted from the default by the user as required
by their desired rate of convergence for the constraint error.
Following the imposition of constraint dynamics, the first
order dependencies are calculated as in (4). The sub-class
has the facility to create an output function which provides
the equations necessary to generate the vectors q, q̇,z, ż for
implementation outside the provided framework.

To arrive at the reduced order ODEs, the sub-class
DimReduction is applied to the nqd−dimensional ODEs
generated from the Lagrangian formulation. The sub-class
uses the results of the separation of independent and de-
pendent variables to calculate (5) and (6) in order to apply
(7a-c) to the original set of ODEs. The result is the nq-
dimensional system of ODEs. The sub-class also possesses
the functionality to output a function with the reduced order
dynamic matrices for external use, should the user so choose.

Finally, the ContinuousDynamics class utilizes the
outputs of the two sub-classes to output the states of the
systems given initial conditions, should the user choose to
simulate within the provided framework.

Discrete Dynamics: In order to simulate floating based sys-
tem, a second class, TransitionDynamics, is included
to generate a hybrid dynamic model. This class has two
functionalities. The first is to output the matrices utilized
to create a transition map at each switching condition. With
knowledge of the continuous states, ∆, the post-switch map
can be calculated as in [19]. Treating the pre-switch state as
q− and the post-switch state as q+, the two are considered
continuous across both sides of the transition. Utilizing
this continuity, the post-switch velocity, q̇+, are determined
through x+ = ∆x−, where x : {q, q̇}. In the hybrid system,
q+ is equivalent to F .

The second functionality of the class manifests during
simulation within the framework. It is continuously called
to calculate the ∆ and F required by the hybrid sys-
tem and to generate the initial conditions required by the
ContinuousDynamics class in the next iteration.

Simulation: In the Simulation class, the current version
of the framework does not contain a native control paradigm.
This is by design, as the goal is to provide a testbed in
which controllers can be developed and simulated for CKCs.
Given the states, q, output by the modeled dynamics, the user
has the ability to write a function within the framework that
provides a control input, τ .

The class will output a data file containing state data for
the duration of simulated timespan. In addition, a primitive
visualization using MATLAB’s plotting capabilities to pro-
vide a validatory animation of the system. The layout of the
framework can be seen in Fig. 4

C. User Inputs

The framework requires the user to provide an illustrative
selection of properties and equations in order for it to
successfully model the CKC mechanism of interest. Due to

Fig. 4. Programmatic structure of CKC MATLAB framework. A template
is provided to guide the formatting of the user inputs, and contains the
necessary options for various configurations and outputs. During simulation,
the continuous and discrete dynamics are iteratively evaluated to provide a
hybrid dynamic environment.

the lack of support for a user-friendly wrapper for mechanism
property exportation capable of handling the self-referential
nature of CKCs, a template file for the required user inputs is
provided within the framework. As support for 3-dimensional
models is under development, the following section describes
the required inputs for planar mechanisms.

Irrespective of whether the user’s goal is simulation or
extraction of dynamic functions, the user supplies the phys-
ical properties of the links, i.e. mass, length, inertia with
respect to the axis of rotation, and location of center of
mass along the link. Maintaining the link order used to
determine the mass physical properties, the user supplies the
vector of chosen state variables, qd = [q1,q2, ...qn]. Next,
the user is prompted to highlight the actuated variables
in a vector qa, drawn from a subset of qd unique to the
mechanism of interest. The framework then further requires
the symbolic kinematic relations following the application of
virtual separation as illustrated in Fig. 2. The nc constraints
must be written into a vector of 2nc× 1, as demonstrated
with (1) in order to illustrate the constraint with respect to
planar environment.

If the mechanism of interest is a floating-base system and
an accompanying simulation is required, the switching condi-
tions must be additionally provided to the framework. These
conditions must be written in terms of the supplied state
variables. Currently, a maximum of two states is supported
in the hybrid dynamic model, however expansion to n-states
is underway. For fixed-base systems, only one continuous
state is present, thus no switching conditions are required

2736

Fig. 5. Monopedal dynamic gait sequence simulated using BOLT, The driver link is shown in black while the driving loop is in red.

and the package automatically models the system within the
hybrid domain as a single state.

IV. CASE STUDIES

To provide illustrative examples of the dynamic simulation
capabilities of the framework, simulations have been con-
ducted for two distinct legged CKC mechanisms. The first is
the author’s BOLT, an evolution of the mechanism presented
in [9]. The second example is the KAIST Raptor. In both
case studies, the mechanisms are simulated performing a
monopedal running gait, demonstrating the framework’s ca-
pacity to simulate hybrid dynamic systems and characterize
highly unstable mechanisms. Simulation of a simple static
gait, while not pictured, can be achieved through application
of the corresponding option within the framework.

A. BOLT

The single-degree of freedom leg, BOLT, is designed with
the goal of simplifying legged locomotion while maintaining
the full articulation found in biological legs, shown in Fig.
1(a). Incorporation of CKCs within the mechanical design is
the most effective approach to achieve the necessary rigidity
and weight distribution. As such, BOLT is characterized
by a CKC consisting of two closed loops. As highlighted
previously, such a mechanism is challenging to simulate
numerically with conventional tools and methods.

Utilizing the presented framework, an accurate and drift-
free numerical simulation was obtained. By enabling the
simulation option, the visualization found in Fig. 5 was
generated. The figure shows the leg transitioning between
flight and stance phase, and maintains a periodic gait for the
duration of the simulation. In demonstrating such behavior,
the ability of the presented package to model multi-loop
CKCs in hybrid dynamic environments is validated. All
impacts are assumed to be rigid and instantaneous, as current
framework does not yet contain a compliant contact model.

In Fig, 6, the prescribed asymptotic behavior of the
constraint error is shown to converge to zero, indicating
the method’s validity for drift-free real time model-based
control. As the motivation of this case study is to show
the functionality of the presented framework to generate a
dynamic simulation of a CKC mechanism-based leg, only the
angle of attack is controlled with a proportional-derivative
controller while the pitch angle is held constant. Due to the
simplicity of the controller, the crank angle of the driver link
can be seen to oscillate within a narrow band, rather than the

more energetically efficient full rotation for which BOLT is
designed.

B. KAIST Raptor

To illustrate the versatility of the framework, the next
case study is conducted on an established CKC mechanism-
based leg implemented on the KAIST Raptor. The leg as
designed consists of a three-loop, single DOF mechanism
that is integrated into a bipedal robot. The corresponding leg
lengths and masses necessary for simulation are obtained
from [4]. The mass properties required were approximated
through application of the material attributes to flat link
geometries, and the constraint equations were determined
through the application of virtual separation.

The Raptor leg is simulated under the similar conditions
to BOLT in the previous subsection. The results can be seen
in Fig. 7. Whereas BOLT exhibited a monopedal forward
running gait, the Raptor was simulated to perform a gait more
reminiscent of hopping to demonstrate the package’s ability
to perform more varied gaits in simulation. Such flexibility
serves to make the framework a stronger tool when utilized
for exploring various controllers and architectures.

While the Raptor leg is more complex than BOLT due to
its inclusion of an additional kinematic loop, the presented
framework was able to accurately model the mechanism
with asymptotically zero drift in the constraints, as seen in
Fig. 8. Throughout, ode45 solver is utilized for numerical
integration with a time step of 0.002s. The presented methods
are capable of modeling CKCs with any number of loops,
provided correct relations are supplied.

Fig. 6. Constraint errors for the BOLT simulation. Each kinematic loop
has a corresponding constraint equation represented in both x and y.

2737

Fig. 7. Monopedal dynamic gait simulation using KAIST Raptor.

Fig. 8. Constraint errors for the KAIST Raptor simulation. In this case as
the Raptor has three loops, there are 6 corresponding constraint equations.

V. CONCLUSIONS AND FUTURE WORK

The framework presented in this paper is capable of
modeling, simulating, and providing functions for external
implementation of kinematic chains. Special attention is
devoted to the application of the package to CKCs incor-
porated in legged robotics, as the field of legged locomotion
heavily relies on model-based control and thus requires
accurate, lightweight dynamic modeling in order to develop
controllers capable of real-time implementation. The use of
this package to create such models can aid researchers in
many areas to explore new applications and controls for
complex mechanisms.

As a live tool for the modeling of kinematic chains,
the presented framework will undergo continuous
development. Further improvements will coincide with
BOLT’s development and integration, including addressing
the necessary modeling needs required to support the
implementation of highly-underactuated quadrupedal robots
in the field. In the near future, the input modalities will
be expanded to facilitate the interpretation of user-friendly
file formats. In addition, integration with an off-the-shelf
visualization package such as Gazebo will be explored.
Further, work will be undertaken to expand the framework
to 3D cases and to add open kinematic chain dependencies.
The incorporation of these further aspects are aimed at the
realization of a final product that will be utilized as a unified
modeling framework for fixed and floating base kinematic
chain dynamics.

ACKNOWLEDGMENT

The material presented in this paper was drawn from work
supported through the National Science Foundation under
Grant No. 1557312.

REFERENCES

[1] T. Huang, Z. Li, M. Li, D. G. Chetwynd, and C. M. Gosselin,
“Conceptual Design and Dimensional Synthesis of a Novel 2-DOF
Translational Parallel Robot for Pick-and-Place Operations,” Journal
of Mechanical Design, vol. 126, no. 3, p. 449, 2004.

[2] W. Saab and P. Ben-Tzvi, “Design and Analysis of a Robotic Modular
Leg Mechanism,” in Proceedings of ASME 2016 International Design
Engineering Technical Conferences and Computers and Information
in Engineering Conference. ASME, aug 2016, p. V05AT07A062.

[3] E. Refour, B. Sebastian, and P. Ben-Tzvi, “Two-Digit Robotic Ex-
oskeleton Glove Mechanism: Design and Integration,” Journal of
Mechanisms and Robotics, vol. 10, no. 2, p. 025002, jan 2018.

[4] J. Park, K.-S. Kim, and S. Kim, “Design of a cat-inspired robotic leg
for fast running,” Advanced Robotics, vol. 28, no. 23, pp. 1587–1598,
2014. [Online]. Available: http://dx.doi.org/10.1080/01691864.2014.
968617

[5] G. Kenneally, A. De, and D. E. Koditschek, “Design Principles
for a Family of Direct-Drive Legged Robots,” IEEE Robotics and
Automation Letters, vol. 1, no. 2, pp. 900–907, 2016.

[6] W. Bosworth, S. Kim, and N. Hogan, “The MIT super mini cheetah:
A small, low-cost quadrupedal robot for dynamic locomotion,” in
2015 IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR). IEEE, oct 2015, pp. 1–8. [Online]. Available:
http://ieeexplore.ieee.org/document/7443018/

[7] D. W. Haldane, J. K. Yim, and R. S. Fearing, “Repetitive
extreme-acceleration (14-g) spatial jumping with Salto-1P,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, sep 2017, pp. 3345–3351. [Online]. Available:
http://ieeexplore.ieee.org/document/8206172/

[8] C. Hubicki, J. Grimes, M. Jones, D. Renjewski, A. Spröwitz,
A. Abate, and J. Hurst, “ATRIAS: Design and validation of a
tether-free 3D-capable spring-mass bipedal robot,” The International
Journal of Robotics Research, vol. 35, no. 12, pp. 1497–1521, oct
2016. [Online]. Available: http://journals.sagepub.com/doi/10.1177/
0278364916648388

[9] V. R. Kamidi, W. Saab, and P. Ben-Tzvi, “Design and analysis
of a novel planar robotic leg for high-speed locomotion,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Vancouver, Canada: IEEE, sep 2017, pp. 6343–6348.
[Online]. Available: http://ieeexplore.ieee.org/document/8206540/

[10] W. Saab, W. Rone, and P. Ben-Tzvi, “Robotic Modular Leg:
Design, Analysis and Experimentation,” Journal of Mechanisms and
Robotics, no. c, 2017. [Online]. Available: http://mechanismsrobotics.
asmedigitalcollection.asme.org/article.aspx?doi=10.1115/1.4035685

[11] Zhiyong Wang and F. Ghorbel, “Control of closed kinematic
chains: a comparative study,” in 2006 American Control Conference.
Minneapolis, Minnesota, USA: IEEE, 2006, p. 6 pp. [Online].
Available: http://ieeexplore.ieee.org/document/1656597/

[12] M. Hutter, C. Gehring, and R. Siegwart, “proNEu: Derivation of
analytical kinematics and dynamics,” ETH Zurich, Tech. Rep., 2011.

[13] R. Tedrake and Drake Development Team, “Drake: A planning,
control, and analysis toolbox for nonlinear dynamical systems,” 2016.
[Online]. Available: http://drake.mit.edu

[14] A. Hereid and A. D. Ames, “FROST: Fast robot optimization and
simulation toolkit,” in 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, sep 2017, pp. 719–726.
[Online]. Available: http://ieeexplore.ieee.org/document/8202230/

[15] J. Baumgarte, “Stabilization of constraints and integrals of motion in
dynamical systems,” Computer Methods in Applied Mechanics and
Engineering, vol. 1, no. 1, pp. 1–16, jun 1972. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/0045782572900187

[16] B. W. Gordon and S. Liu, “A Singular Perturbation
Approach for Modeling Differential-Algebraic Systems,” Journal
of Dynamic Systems, Measurement, and Control, vol. 120,
no. 4, p. 541, 1998. [Online]. Available: http://dynamicsystems.
asmedigitalcollection.asme.org/article.aspx?articleid=1407967

[17] J. Wittenburg, Dynamics of Multibody Systems, 2nd ed. Springer.
[18] J. W. Grizzle, C. Chevallereau, A. D. Ames, and R. W. Sinnet,

“3D Bipedal Robotic Walking: Models, Feedback Control, and open
problems,” IFAC Symposium on Nonlinear Control Systems, pp. 505–
532, 2010.

[19] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, and E. al., Feedback
Control of Dynamic Bipedal Robot Locomotion, 2007.

2738

