
LEARNING FLATNESS-BASED CONTROLLER USING NEURAL NETWORK

Hailin Ren
Robotics and Mechatronics Lab

Department of Mechanical Engineering
Virginia Tech,

Blacksburg, Virginia 24060

Jingyuan Qi
Department of Physics

Virginia Tech,
Blacksburg, Virginia 24060

Pinhas Ben-Tzvi ∗
Robotics and Mechatronics Lab

Department of Mechanical Engineering
Virginia Tech,

Blacksburg, Virginia 24060

ABSTRACT
This paper presents a method to imitate flatness-based con-

trollers for mobile robots using neural networks. We present
sample case studies for a unicycle mobile robot and an Un-
manned Aerial Vehicle (UAV) quadcopter. The goals of this pa-
per are to (1) train a neural network to approximate a previ-
ously designed flatness-based controller, which takes in the de-
sired trajectories previously planned in the flatness space and
robot states in a general state space, and (2) present a dynamic
training approach to learn models with high dimension inputs. It
is shown that a simple neural network could adequately compute
the highly nonlinear state variables transformation from general
state space to flatness space and replace the complicated de-
signed heuristic to avoid the singularities in the control law. This
paper also presents a new dynamic training method for models
with high dimension independent inputs, serving as a reference
for learning models with a multitude of inputs. Training proce-
dures and simulations are presented to show both the effective-
ness of this novel training approach and the performance of the
well-trained neural network.

INTRODUCTION
Flat systems have gained popularity for analyzing and de-

signing controllers for nonlinear systems due to their advantages
in trajectory planning and tracking [1]. Flat outputs and their
derivatives can be used to express the states and inputs of the
original system or the extended system, simplifying the trajec-

∗Corresponding author − bentzvi@vt.edu

tory planning problem to simple algebra [2] [3]. With the ben-
efits of using a transformation based on the flatness property, a
variety of interpolating functions can be used to design the path
in the flat output space. This property attracts research in path
planning and controllers design for various under-actuated sys-
tems, such as unicycles [4] [5], quadcopters [6] [7], open chain
manipulators [8], etc.

In the last few decades, machine learning techniques have
been used to solve a wide range of problems, such as human
pose estimation [9], natural language processing [10], high-level
motion/primitive tasks planning [11], and others. Using artificial
neural networks to imitate system models and learn the suitable
controllers is also an active topic in the research community. In-
verse kinematics of a redundant manipulator are learned using
neural networks in real time [12]. Three types of compensation
methods were proposed to improve the inverse kinematics based
controller for a robot manipulator [13]. Direct Online Optimiza-
tion of Modeling Errors in Dynamics (DOOMED) is proposed
to calculate the error between the real model and the analytic
model to improve the control performance [14]. A closed-loop
controller is then calculated to control a soft pneumatically actu-
ated manipulator using Reinforcement Learning (RL) [15].

In this paper, we present methods to approximate flatness-
based controllers using artificial neural networks including two
popular case studies: a unicycle and a quadcopter. To deal
with the high dimension inputs of the flatness-based controller
model, we developed a dynamic sampling method to generate
data batches for neural network training. Compared to using a
static dataset, this dynamic sampling method uses and re-uses
the same memory space periodically during the training process,

1 Copyright © 2019 ASME

Proceedings of the ASME 2019
Dynamic Systems and Control Conference

DSCC2019
October 8-11, 2019, Park City, Utah, USA

DSCC2019-8998

Figure 1. Kinematic model of a unicycle

thereby saving the overall memory space occupied. The authors
believe this type of dataset generation will benefit research in
learning models with large input dimension.

PRELIMINARY MODELING ANALYSIS
Kinematic Model of a Unicycle

Referring to a simple car model with two coaxial wheels
as shown in Fig 1, two wheels are driven independently by two
motors. The inputs to the system are the right and left wheel
velocities, vr and vl , and the configuration of the system can be
fully described by the general coordinates (x, y,ψ), which encap-
sulates the chassis center position and heading angle. The system
can be written in driftless affine-form as,

Ûx = ©«
Ûx1
Ûx2
Ûx3

ª®¬ = ©«
sin(x3)
cos(x3)

0

ª®¬︸ ︷︷ ︸
g1(x)

u1+
©«

0
0
1

ª®¬︸︷︷︸
g2(x)

u2 (1)

where x1, x2 stands for y and x positions, respectively, and x3 for
the heading. u1 =

vr+vl
2 is the rate of heading, u2 =

vr−vl
d is the

rate of rotation, and d is the wheel separation distance. It’s easy
to show that the local accessibility distribution of the car system,
< g1(x),g2(x), [g1,g2](x) >, is of full rank, where [·, ·] presents
the Lie bracket operation. The local accessibility provides this
driftless system with the necessary and sufficient conditions for
controllability. It can be easily checked that the model of uni-
cycle system Eq. 1 cannot be statically linearized. However, by
extending the system based on a new state (x4 = u1) while keep-
ing others the same (xi = xi, i = 1,2,3),

Ûx1 = sin(x3)x4

Ûx2 = cos(x3)x4

Ûx3 = u2

Ûx4 = u1

(2)

Figure 2. Dynamic model of a quadcopter

The extended system can be linearized to a new flat system with
a transformation of variables, z,

z =
©«

z1
z2
z3
z4

ª®®®¬ =
©«

x1
Ûx1
x2
Ûx2

ª®®®¬ =
©«

x1
x4 sin x3

x2
x4 cos x3

ª®®®¬ (3)

The extended system can be written in Brunovsky form with
a feedback law given as,

v =

(
v1
v2

)
=

(
Üx1
Üx2

)
=

(
sin(x3) x4 cos(x3)
cos(x3) −x4 sin(x3)

) (
u1
u2

)
(4)

The system is now transformed via static feedback into a system
which, in suitable coordinate, is fully linear and controllable.
While adapting a classical polynomial control law for the new
input variable v with disturbance compensation, the following
equations can be obtained:

v1 = Üx1+λ1 · e11+λ2 · e21+λ3 · e31

v2 = Üx2+λ1 · e12+λ2 · e22+λ3 · e32
(5)

where e11 = Ûx1 − Ûx1d , e21 = x1 − x1d , e12 = Ûx2 − Ûx2d , e22 =
x2 − x2d , e31 =

∫
x1 −

∫
x1d and e32 =

∫
x2 −

∫
x2d stand for the

error signals. x1d and Ûx1d represent the desired output signals,
corresponding to x1, Ûx1. The coefficients λi, i = 0, ...,5 are to be
specified in Tab. 2.

Dynamic Model of a Quadcopter
A quadcopter that is composed of four rotors is detailed in

Fig. 2. Speeding up or slowing down either rotor couple can
control Yaw angle ψ. Roll angle φ and Pitch angle θ allow the
quadcopter to move in the Y and X directions, respectively. The
rotor is the primary source of control and propulsion for the UAV.
ZYX Euler angles (ψ,φ, θ) are applied with the conditions (−π ≤
ψ < π) for yaw, (−π ≤ φ < π) for pitch, and (−π ≤ θ < π) for roll.

The mapping between the the platform coordinate frame B
and the coordinate frame W is achieved through a 3×3 rotation

2 Copyright © 2019 ASME

matrix WRB involving the three Euler angles (ψ, θ, φ). WRB is
used for the Euler angle representation:

WRB =

cψcθ cψsφsθ − cφsψ sφsψ+ cφcψsθ
cθsψ cφcψ+ sφsψsθ cφsψsθ − cψsφ
−sθ cθsφ cφcθ

 (6)

where c and s denote cosine and sine, respectively. In the follow-
ing, we use R to represent WRB. Using Newtonian laws about
the center of mass, the dynamic equations for the quadcopter are
obtained:

m ÛV0 =
∑

Fext (7)

J Ûω = −ω× Jω+
∑

Text (8)

where the symbol × is the usual vector product, m is the mass, J
is the inertia matrix which is given as a diagonal matrix:

J = ©«
Ix 0 0
0 Iy 0
0 0 Iz

ª®¬ (9)

The coordinate frame is attached to the UAV body frame as
shown in Fig. 2. The angular velocity ω = (ωx ,ωy ,ωz)

T and
angular acceleration α = (αx ,αy ,αz)T of the body frame with
respect to frame B are functions of the first and second time
derivatives of the Euler angles (Ûψ, Ûθ, Ûφ) and (Üψ, Üθ, Üφ). Resolving
the component of these derivatives along the axis of frame B, we
obtain,

ω =
©«
ωx

ωy

ωz

ª®¬ =

1 0 sθ
0 cψ −sψcθ
0 sφ cφcθ

 ©«
Ûψ
Ûθ
Ûφ

ª®¬ (10)

The angular acceleration of the UAV body frame with reference
to frame B is obtained:

Ûω =

1 0 sθ
0 cψ −sψcθ
0 sφ cφcθ

 ©«
Üψ
Üθ
Üφ

ª®¬+

0 0 Ûθcθ
0 − Ûψsψ − Ûψcψcθ + Ûθsψsθ
0 Ûψcψ − Ûψsψcθ − Ûθcψsθ

 ©«
Ûψ
Ûθ
Ûφ

ª®¬
(11)

The notations
∑

Fext,
∑

Text stand for the vector of external
forces and torques, respectively. They can be computed as,∑

Fext =
©«

Ax −(sψsφ+ cψcφsθ)u1
Ay −(sψcφsθ − cψsφ)u1

Az +mg− cφcθu1

ª®¬ (12)

∑
Text =

©«
Ap +u2d
Aq +u3d
Ar +u4

ª®¬ (13)

where (Ax, Ay, Az) and (Ap, Aq, Ar) are aerodynamic forces and
moments acting on the UAV. u1 is the resulting thrust of the
four rotors defined as u1 = (F1 + F2+ ::: +F4); u2 is the dif-
ference of thrust between the left rotor and the right rotor de-
fined as u2 = F4 − F2; u3 is the difference of thrust between
the back rotor and the front rotor, defined as u3 = F3 − F1; u4

is the difference of torque between the two clockwise-turning
rotors and the two counterclockwise-turning rotors, defined as
u4 = Cf m[(F1 +F3)− (F2 +F4)], and Cf m is the force to moment
scaling factor.

To avoid Lie transformation matrices singularity, we replace
the real control signals (u1,u2,u3,u4) with (u1,u2,u3,u4) . u1 is
delayed by a double integrator, while the other control signals
are unaltered by the variable transformation.

u1 = ζ ; Ûζ = ξ; Ûξ = u1;u2 = u2;u3 = u3;u4 = u4 (14)

The resulting system then can be described by state space equa-
tions in the following form:

Ûx = f (x)+
4∑
i=1

gi(x)ui

y = h(x)

(15)

where x = (x, y, z,ψ, φ, θ, Ûx, Ûy, Ûz, ζ, ξ, p,q,r), y = (x, y, z,ψ), and,

f =

©«

Ûx
Ûy

Ûz
qsφseθ + rcφseθ

qcφ− rsφ
p+ qsφtθ + rcφtθ

Ax

m −
1
m (sφsψ+ cφcψsθ)ζ

Ay

m −
1
m (cφsψsθ − sφcψsθ)ζ
Az

m +g−
1
m (cφcθ)ζ
ξ
0

Iy−Iz
Ix

qr + Ap

Ix
Iz−Ix
Iy

pr + Aq

Iy
Ix−Iy
Iz

pq+ Ar

Iz

ª®®®®®®®®®®®®®®®®®®®®®®®®®¬
g1 =

∂

∂x11
,g2 =

d
Ix

∂

∂x12
,g3 =

d
Iy

∂

∂x13
,g4 =

1
Iz

∂

∂x14

(16)

The input-output decoupling problem is solvable for the
nonlinear system by means of static feedback, and the vector
relative degree r1,r2,r3,r4 is given by r1 = r2 = r3 = 4;r4 = 2. We
choose the flatness outputs as,

y = [y1, y2, y3, y4]
T = [x, y, z,ψ]T (17)

then obtain a feedback control law,
v = [yr1

1 , y
r2
2 , y

r3
3 , y

r4
4]

T = b(x)+∆(x)u (18)

where v represents the new input control signals. The matrix
∆(x) is non singular everywhere in the region ζ , 0, − π2 < θ <
π
2 ,−

π
2 < φ <

π
2 . Therefore, the input-output decoupling problem

is solvable for our system by means of a control law in the form
of:

u = α(x)+ β(x)v (19)

3 Copyright © 2019 ASME

Table 1. Mass-properties of the quadcopter
Parameter Description Value Units

Gravity g 9.81 [m/s2]
Quadcopter diameter d 0.45 [m]

Mass m 0.468 [Kg]
Quadcopter inertia Ix,y,z 4.9·10−3 [Kg·m2]

where,
α(x) = −∆−1(x)b(x) (20)

β(x) = ∆−1(x) (21)

The system can be transformed via static feedback into a
system which, in suitable coordinates, is fully linear and control-
lable. While adapting a classical polynomial control law for the
new input variable v with disturbance compensation, the follow-
ing set of equations can be obtained:

v1 = x(4)
d
−λ3Ýe11−λ2 Üe11−λ1 Ûe11−λ0e11

v2 = y
(4)
d
−λ3Ýe12−λ2 Üe12−λ1 Ûe12−λ0e12

v3 = z(4)
d
−λ3Ýe13−λ2 Üe13−λ1 Ûe13−λ0e13

v4 = Üψd −λ5 Ûe5−λ4e5

(22)

where xd, yd, zd,ψd represent the desired output signals, corre-
sponding to x, y, z, ψ, respectively, and the error signals e11 =
x0 − x0d, e12 = y0 − y0d, e13 = z0 − z0d , and e5 = ψ −ψd . The co-
efficients λi , i = 0, ...,5 are specified in Tab. 2.

The mass-properties of the quadcopter in our case study are
chosen as shown in Tab. 1. Table 2 overviews the controller pa-
rameters used in the unicycle controller and the quadcopter con-
troller. In the quadcopter control, only the body positions x, y, z
are of interest, and the control parameters of the yaw control are
set to zeros, λ4 = λ5 = 0.

DESIGNING FLATNESS-BASED CONTROLLER
Dynamic Sampling Approach

Generalization over the entire input space is one of the prin-
ciples to estimate the performance of the trained neural network
in machine learning. One way to achieve generalization is to
create a large enough dataset that covers the entire input space,
while the other is to split the dataset into a training set and a
validation set. The former ensures generalization, but is compu-
tationally expensive, especially when applied in problems with

Table 2. Controller parameters for the unicycle and quad-
copter

λ0 λ1 λ2 λ3
unicycle N/A 0.085 0.0025 0.0001

quadcopter 0.0025 0.0025 1.0000 0.0100

high input dimension, and is often infeasible in continuous input
problems [16]. The latter helps avoid over-training in the subset,
but is prone to fail when the dataset is not large enough or only
partially covers the input space [17].

To deal with the proposed high dimension continuous in-
put problems, we propose a dynamic sampling approach that
marginally splits the entire workspace into a training set and
a validation set. For a problem with n dimension inputs, x =
[x1, x2, ..., xn], with their lower boundaries, xli , and upper bound-
aries, xui . Discretization is applied to each input xi uniformly
into ni bins with a fixed interval δi for xi . The dataset is now
converted to a finite set, Xdata = {[x1, x2, ..., xn]}, xi ∈ {xli, x

l
i +

δi, xli + 2δi, ..., xui }. The size of the dataset Xdata increases dra-
matically when the input dimension increases and when the dis-
cretization becomes denser. Instead of storing the whole dataset,
only the relatively smaller set, the validation dataset Xvalid , is
stored during the training process. To recover the continuous in-
put space, sampling is performed based on the discrete data using
a predefined distribution. The training procedure with dynamic
sampling approach is described in the form of following pseu-
docode:

procedure Training Network
({xli }, {x

u
i },ni)

1: Obtain discretization interval δi for xi
2: Randomly generate validation set Xvalid

3: for each training epoch, i do
4: for each training batch, j do
5: Generate discrete training set xd

batch
∈ {x |x ∈ Xdata −

Xvalid} based on {xli }, {x
u
i }

6: Generate continuous training set xc
batch

on the distribu-
tion over xd

batch
7: Training neural network using xc

batch
8: end for
9: end for

Here we applied i.i.d Gaussian sampling to the selected dis-
crete training set to recover to continuous space, xc

batch
∼

p(xd
batch

|{δi}). For data along each dimension, the selected dis-
crete value is used as the mean value, µ = xd , while the standard
deviation is selected to be the discretization interval σ = δ. The
generated training data along each dimension obeys Gaussian
distribution, xc ∼ N(xd, δ). To avoid overfitting on any specific
trajectory, the boundaries of the inputs, {xli, x

u
i }, were provided

by generating random trajectories using patterns such as a circle,
a square , and a line. These inputs domains were then discretized
and divided into training and validation datasets.

Neural Network Design and Training
Neural networks are widely used to better approximate

highly nonlinear models or models with uncertainty to increase

4 Copyright © 2019 ASME

Figure 3. Training process of (a) the kinematic model of the
unicycle, and (b) the dynamic odel of the quadcopter

the performance and stability of controllers. To approximate
the flatness-based controller of the unicycle and the quadcopter,
Multilayer Perceptron (MLP) neural network is used. The pro-
posed neural network consists of the fully connected neurons in
each layer with linear activation function in all neurons. The
neural network is built using Keras [18] with TensorFlow [19] as
the backend. Hyperopt [20] is used to tune the hyperparameters
of the neural network including number of layers nl , number of
neurons in each layer nn, activation functions used for neurons in
each layer except the final output layer fa, and the parameters for
the activation if needed fp . Details of the choices and selected
choices of the hyperprarameters are presented in Tab. 3. The
proposed neural network consists of 5 layers with 512 neurons
in each layer. An activation function in each neuron is selected
to be Leaky ReLU [21] with α = 0.5 for the optimal performance.

Based on control laws in Eq. (4) and Eq. (5) for the unicycle,
and Eq. (19) and Eq. (22) for the quadcoper, the neural network

Table 3. Hyperparameters tuning for neural network
Parameters Choices Selected

nl [4,5,6,7,8] 5
nn [128,256,512,1024] 512

fa
[’ReLU’, ’Sigmoid’

, ’Leaky ReLU’] ’Leaky ReLU’

fp [0.1,0.3,0.4,0.5,0.7,0.9] 0.5

Table 4. Loss weights used for the optimization
ωi u1 u2 u3 u4

unicycle 1 1 N/A N/A
quadcopter 1000 1000000 100000 100000000

takes in the error signals and states and outputs the control sig-
nals for the model. We define our objective function to minimize
the weighted loss function based on the order of magnitude of
our controller outputs:

min
Θ

L =
n∑
i=1

ωi ‖ui −uΘi ‖2 (23)

where Θ represents the trainable parameters of the neural net-
work, ωi is the weight for the loss of the i-th outputs, ui is the
output value from the flatness-based controller and is used as the
ground truth, while uΘi is the estimated output from the neural
network. For the unicycle controller, n = 2 outputs are designed
in the neural network with the loss weightsω1 =ω2 = 1, while the
neural network of the quadcopter controller generates n = 4 out-
puts with loss weights, as shown in Tab. 4. The training process
includes 100 training epochs. Within each training epoch, 1000
training batches are performed, followed by validation using 100
batches of data. Weighted Root Mean Square Error (WRMSE)
is used in the validation process:

W RMSE =

√∑n
i=1ωi(ui −uΘi)2

n
(24)

Figure 3 shows the training processes of flatess-based con-
trollers for the unicycle and the quadcopter. It can be seen that
the validation loss decreases as the training process progresses. It
can be seen that the validation error, WRMSE, converges to ap-
proximately 4× 10−3 for the unicycle model and approximately
0.1 for the quadcopter model.

VALIDATION OF PROPOSED APPROACH
To evaluate the performance of the well-trained controller

using neural network in real applications, we compared our
trained controller to the mathematical model-based controller in
three different motions. For the unicycle, point-to-point, square,
and circle motions are performed. The quadcopter performs sim-
ilar motions in 3D with various vertical heights. The simulation
was performed using Simulink [22] as shown in Fig. 4. All tra-
jectories are generated using the trajectory planner. The desired
trajectories are then sent to the controller, which could be either
the well-trained neural network controller or the flatness-based
controller that uses an explicit mathematical model. The simu-
lated model uses controller outputs for its calculations.

5 Copyright © 2019 ASME

Figure 4. Simulation system for the unicycle and the quad-
copter

Trajectory Planner
Given the diffeomorphism in Eq. (3) and Eq. (17), a point-

to-point motion planning and tracking control can be designed in
a flatness workspace. For example in the unicycle problem, given
the terminal conditions in the Cartesian coordinates at both start
time t0 and final time t f , {xi(t), Ûxi(t); i ∈ {1,2,3}, t ∈ {t0, t f }}, the
terminal conditions can be transformed to the corresponding ter-
minal conditions in the flatness workspace, {xi(t), Ûxi(t), Üxi(t); i ∈
{1,2}, t ∈ {t0, t f }}. To satisfy these six terminal conditions, we
choose three types of functions as trajectories for xi(t); i ∈ {1,2}:
fifth-order polynomials, trigonometric functions, and piecewise
functions. For fifth-order polynomials, we used the following
functions:

xi(t) = a5t5+ a4t4+ a3t3+ a2t2+ a1t + a0 i = {1,2} (25)

For trigonometric functions, we choose following functions:
x1(t) = r · cos(2π · t/T)
x2(t) = r · sin(2π · t/T)

(26)

where r is the radius of the circle and T is the period in which
the unicycle runs around the circle. The desired trajectory is a
circle that starts from (10,0) at the top, running clockwise with
radius 10 meters, all the way back to (10,0). In the simulation, we
choose the real initial point to be (-0.5,8) to test the convergence.

We choose the following formula for our piecewise function:

xi(t)=

a51t5+ a41t4+ a31t3+ a21t2+ a11t + a01 0 < t ≤ t1
a52t5+ a42t4+ a32t3+ a22t2+ a12t + a02 t1 < t ≤ t2
a53t5+ a43t4+ a33t3+ a23t2+ a13t + a03 t2 < t ≤ t3
a54t5+ a44t4+ a34t3+ a24t2+ a14t + a04 t3 < t ≤ t4

i = {1,2}

(27)
The desired trajectory, (x1(t), x2(t)), is a square, going from (0,0)
to (0,24), then to (24,24), then (24,0), and finally back to (0,0).
In the simulation, we choose the real initial point at (−2,2) to test
convergence.

Figure 5. Point-to-point motion for the unicycle

A similar approach was used in the quadcopter process. We
choose the same three types of trajectory functions that were
used in the unicycle model. For the fifth order polynomials, we
choose the same function as Eq. (25). For trigonometric func-
tions of the quadcopter, we appended one more function to Eq.
26 to accommodate for the motion in the Z direction:

x3(t) = −1− t/10 (28)

where x3 is the position along the Z direction, representing
height. The desired trajectory, (x1(t), x2(t), x3(t)), represents a
circle, that starts from (0,15,-1) at the top, running clockwise
with radius 10 meters all the way to (0,15,-1-10/t). The quad-
copter simultaneously decreases its height at a constant rate. In
the simulation, we choose the real initial point at (1,2,3) to test
convergence. Eq. (27) is used as our piecewise function. The
desired trajectory takes the form of a square going from (0,0,0)

6 Copyright © 2019 ASME

Figure 6. Square motion for the unicycle

to (45,0,55), then to (45,45,0), then (0,45,55), and finally back to
(0,0,0). In the simulation, we choose the real initial point to be
(1,2,3) to test the convergence.

Trajectory Tracking Performance
Three motions of the unicycle were performed and com-

pared in Figs. (5∼7) while these of the quadcoper are presented
in Figs. (8∼10). One of the most straightforward measures of
controller performance is evaluating the average deviation from
the desired trajectory over the whole tracking process, using
Root Mean Square Error (RMSE) and setting all weights to 1
in Eq. (24),

RMSE =
n∑
i=1
‖ fi −gi ‖2 (29)

Figure 7. Circle motion for the unicycle

where fi and gi are the two compared trajectories at timestep
i. Another way to measure controller performance is to capture
the maximum ”overshoot” during the tracking process, using the
maximum absolute deviation values,

M AD =max ‖ fi −gi ‖2 (30)

where fi and gi are the two compared trajectories at timestep i.
Similarly, these criteria can be used to estimate the imitation per-
formance of the neural network controller to the explicit mathe-
matical model based controller. Table 5 shows the performance
criteria based on the three motions. It can be seen that the neu-
ral network-based controller obtained similar performance as the
mathematical model-based controller. Compared to the math-
ematical model-based controller, the neural network-based con-
troller applied larger control inputs in the unicycle problem. This
could have been due to the limited size of the neural network or

7 Copyright © 2019 ASME

Table 5. Performance on different motions
Unicycle

math1 nn2

RMSE MAD RMSE MAD
linear 2.407 2.007 3.035 2.801
square 1.014 0.689 1.970 1.665
circle 0.899 0.700 1.346 1.208

Quadcopter
math nn

RMSE MAD RMSE MAD
linear 1.834 1.345 1.836 1.356
square 1.320 2.393 1.803 3.255
circle 4.825 9.448 4.754 9.290
1 math: mathematical model-based controller
2 nn: neural network-based controller

the uniqueness of the path.

CONCLUSION AND FUTURE WORK
In this work, we accurately approximated flatness-based

controllers using neural networks. We presented two case stud-
ies, a kinematic model for a unicycle and a dynamic model for a
quadcopter. A dynamic sampling method was proposed to avoid
large memory allocation during the training for problems with
high input dimension. We simulated a well-trained model us-
ing three different motions and quantified the imitating perfor-
mance of our neural network controller in comparison to a math-
ematical model-based controller. It was shown that the neural
network-based controller was able to emulate two complex non-
linear controllers. The proposed method of dynamic sampling
is also useful for training high-input-dimension neural networks
with ground truth modeling, which is not limited to the presented
study cases. The well trained controller can be further integrated
with high level controllers or task planners that are neural net-
work based or heuristic.

Future work involves training the neural network controller
using real world data to include the uncertainty in mathematical
modeling to make it more robust and stable. Sampling methods
and neural network architectures need to be improved to perform
adequate learning with limited real world data, as real world data
collection is expensive in comparison to generating data from a
simplified simulated model. Also, a transfer learning framework
or conditional neural network could be developed to handle the
cases where model parameters change.

ACKNOWLEDGMENT
The authors would like to gratefully acknowledge the sup-

port of NVIDIA Corporation with the donation of the Titan Xp
GPU used for this research.

Figure 8. Point-to-point motion for the quadcopter

8 Copyright © 2019 ASME

Figure 9. Square motion for the quadcopter Figure 10. Circle motion for the quadcopter

9 Copyright © 2019 ASME

REFERENCES
[1] Sira-Ramı́rez, H., and Agrawal, S., 2004. Differentially

Flat Systems. CRC Press, 5.
[2] Francisco, S., Murray, R. M., Rathinam, M., and Sluis, W.,

1995. “Diierential Flatness of Mechanical Control Sys-
tems: A Catalog of Prototype Systems”. In Proceedings
of the 1995 ASME International Congress and Exposition.

[3] Soheil-Hamedani, M., Zandi, M., Gavagsaz-Ghoachani,
R., Nahid-Mobarakeh, B., and Pierfederici, S., 2016.
“Flatness-based control method: A review of its applica-
tions to power systems”. In 2016 7th Power Electronics
and Drive Systems Technologies Conference (PEDSTC),
IEEE, pp. 547–552.

[4] Tang, C. P., 2009. “Differential flatness-based kinematic
and dynamic control of a differentially driven wheeled
mobile robot”. In 2009 IEEE International Conference
on Robotics and Biomimetics (ROBIO), IEEE, pp. 2267–
2272.

[5] De Luca, A., Oriolo, G., and Samson, C., 1998. “Feedback
control of a nonholonomic car-like robot”. In Robot Motion
Planning and Control. Springer-Verlag, pp. 171–253.

[6] Poultney, A., Kennedy, C., Clayton, G., and Ashrafiuon,
H., 2018. “Robust Tracking Control of Quadrotors Based
on Differential Flatness: Simulations and Experiments”.
IEEE/ASME Transactions on Mechatronics, 23(3), 6,
pp. 1126–1137.

[7] Cowling, I. D., Yakimenko, O. A., Whidborne, J. F., and
Cooke, A. K., 2007. “A prototype of an autonomous con-
troller for a quadrotor UAV”. In 2007 European Control
Conference (ECC), IEEE, pp. 4001–4008.

[8] Agrawal, S., and Sangwan, V., 2008. “Differentially Flat
Designs of Underactuated Open-Chain Planar Robots”.
IEEE Transactions on Robotics, 24(6), 12, pp. 1445–1451.

[9] Ren, H., Kumar, A., Wang, X., and Ben-Tzvi, P., 2018.
“Parallel Deep Learning Ensembles for Human Pose Es-
timation”. In Dynamic Systems and Control Conference,
ASME, p. V001T07A005.

[10] Young, T., Hazarika, D., Poria, S., and Cambria, E., 2018.
“Recent Trends in Deep Learning Based Natural Language
Processing [Review Article]”. IEEE Computational Intel-
ligence Magazine, 13(3), 8, pp. 55–75.

[11] Riedmiller, M., Hafner, R., Lampe, T., Neunert, M., De-
grave, J., Van de Wiele, T., Mnih, V., Heess, N., and Sprin-
genberg, J. T., 2018. “Learning by Playing - Solving Sparse
Reward Tasks from Scratch”. In Proceedings of Machine
Learning Research, pp. 4344–4353.

[12] Toshani, H., and Farrokhi, M., 2014. “Real-time inverse
kinematics of redundant manipulators using neural net-
works and quadratic programming: A Lyapunov-based ap-
proach”. Robotics and Autonomous Systems, 62(6), 6,
pp. 766–781.

[13] Pane, Y. P., Nageshrao, S. P., Kober, J., and Babuška, R.,

2019. “Reinforcement learning based compensation meth-
ods for robot manipulators”. Engineering Applications of
Artificial Intelligence, 78, 2, pp. 236–247.

[14] Ratliff, N., Meier, F., Kappler, D., and Schaal, S., 2016.
“DOOMED: Direct Online Optimization of Modeling Er-
rors in Dynamics”. Big Data, 4(4), 12, pp. 253–268.

[15] Thuruthel, T. G., Falotico, E., Renda, F., and Laschi, C.,
2019. “Model-Based Reinforcement Learning for Closed-
Loop Dynamic Control of Soft Robotic Manipulators”.
IEEE Transactions on Robotics, 35(1), 2, pp. 124–134.

[16] Watkins, C. J. C. H., 1989. “Learning from Delayed Re-
wards”. PhD thesis, King’s College.

[17] Reitermanová, Z. “Data Splitting”. In WDSs 10 Proceed-
ings of Contributed Papers, pp. 31–36.

[18] Chollet, F., et al., 2015. Keras.
[19] Abadi;, M., Agarwal;, A., Barham;, P., Brevdo;, E., Chen;,

Z., Citro;, C., Corrado;, G. S., Davis;, A., Dean;, J., Devin;,
M., Ghemawat;, S., Goodfellow;, I., Harp;, A., Irving;, G.,
Isard;, M., Jozefowicz;, R., Jia;, Y., Kaiser;, L., Kudlur;,
M., Levenberg;, J., Mané;, D., Schuster;, M., Monga;, R.,
Moore;, S., Murray;, D., Olah;, C., Shlens;, J., Steiner;,
B., Sutskever;, I., Talwar;, K., Tucker;, P., Vanhoucke;, V.,
Vasudevan;, V., Viégas;, F., Vinyals;, O., Warden;, P., Wat-
tenberg;, M., Wicke;, M., Yu;, Y., and Zheng;, X., 2015.
TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Systems.

[20] Bergstra, J., Yamins, D., and Cox, D. D., 2013. Making
a Science of Model Search: Hyperparameter Optimization
in Hundreds of Dimensions for Vision Architectures. Tech.
rep.

[21] Maas, A. L., Hannun, A. Y., and Ng, A. Y., 2013. “Rectifier
Nonlinearities Improve Neural Network Acoustic Models”.
In 30th International Conference on Machine Learning.

[22] MathWorks. Simulink - Simulation and Model-Based De-
sign - MATLAB.

10 Copyright © 2019 ASME

