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ABSTRACT
Airway management is one of the most important priorities

when dealing with patients with severe injuries, but knowledge
of the important anatomy and physiology is needed for providers
to perform a successful surgery . This paper provides a solu-
tion for the precise cricothyroid membrane detection problem for
real-time surgical airway management applications. With a com-
mercial compact and portable cricothyrotomy kit, the proposed
method will enable providers with general knowledge to perform
successful first-aid airway management. In this paper, we pro-
pose a Hybrid Neural Network (HNNet), consisting of two paral-
lel computing ensembles. The first ensemble takes as an input a
low-resolution global image and outputs the Region-of-Interest
(ROI) from the predefined grids. The high-resolution image is
then cropped according to the ROI, and fed into the second en-
semble to achieve precise keypoint detection. Global features
and their spatial information from the first ensemble are also fed
into the second ensemble to improve the precision. A dataset that
consists of over 16,000 images from 13 subjects is built, and the
location of the cricothyroid membrane in each image is precisely
labeled by medical experts. The training results are presented to
show both the efficiency and improved performance of our pro-
posed method compared to existing ones.

∗Authors contributed equally
†Corresponding author − bentzvi@vt.edu

Figure 1. A Semi-Autonomous Victim Extraction Robot
(SAVER) serves for victim extraction

1 INTRODUCTION
Keeping the airway open and clean is crucial when dealing

with severely injured patients. Maintaining adequate oxygena-
tion to the patient’s lungs remains a high priority after natural
or human-made disasters [1, 2]. Compared to common non-
invasive airway management, surgical cricothyrotomy requires
specialized medical equipment or advanced training [3, 4]. Us-
ing a cricothyrotomy kit to establish the airway through the skin
and cricothyroid membrane is a much easier and quicker method
compared to other methods [5].

The motivating example this work serves for is victim ex-
traction using a Semi-Autonomous Victim Extraction Robot
(SAVER), as shown in Fig.1. A semi-autonomous approach
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to first-Aid airway management can be performed by high-
level remote command from an operator. Robotic manipula-
tors equipped with cricothyrotomy kit will perform autonomous
cricothyrotomy on the victim with visual feedback. Compared
to teleoperated operation, the proposed autonomous cricothy-
roid membrane (CTM) detection and manipulation will save the
communication cost and achieve a fast response. This paper fo-
cuses on solving precise cricothyroid membrane keypoint detec-
tion problem using RGB images to help medical providers locate
the invasion point for the cricothyrotomy kit.

Keypoints detection is an important research topic in com-
puter vision with a wide range of applications in human-
computer interaction [6], Augmented Reality (AR) and Virtual
Reality (VR) [7], gaming, and filmmaking [8], and security and
surveillance [9]. Various machine learning techniques with care-
fully engineered feature extractors have been developed to make
precise predictions of different keypoints of interest [10, 11]. In
the last decade, as large datasets and powerful computation be-
come available, deep learning, associated with deep neural net-
works, has been gaining popularity in solving highly nonlinear
problems with delicate performances that match or exceed hu-
mans [12,13]. This generates more research in an effort to design
and apply different neural networks in computer vision. Deep
neural networks that consist of multiple layers are developed
to make more precise predictions but increase both the training
and running time [14–16]. Compressed images are always used
to improve the overall processing speed [14–16], while high-
resolution input images provide more features and thus improve
the final prediction precision [17, 18]. However, the motivating
cricothyrotomy application requires not only accurate prediction
generated from the learning-based approach, but also computa-
tion efficiency for real-time processing.

This paper presents a Hybrid Neural Network (HNNet),
which consists of two parallel computing ensembles. The first
ensemble is deployed to generate the Region of Interest (ROI)
using compressed images in low-resolution. The second ensem-
ble takes in the ROI selected from the first ensemble in high-
resolution and the intermediate global features extracted in the
first ensemble to generate precise predictions in the original
high-resolution images. For validating the performance of the
proposed neural network, a dataset consisting of 16,415 images
was built with the locations of the cricothyroid membrane la-
beled by medical experts. Comparison with other state-of-the-art
methods in prediction performance is also presented.

2 RELATED WORKS
Very deep neural networks are developed for applications

with strict requirements in accuracy [18–22]. Low-level features
are extracted by the first couple layers while later couple layers
are in charge of generating high-level features from the low-level
ones. Various neural network architectures have been developed

Figure 2. Gallery of some related works. (A) Hourglass net-
work, (B) Shift layers network, (C) Capsule network, (D) High
resolution network

to improve the estimation, as shown in Fig. 2. Features can be
up/down-sampled to different resolutions and then combined to
generate high-level features and thus improve the final predic-
tion [19, 23]. Convolutional layers and pooling layers were de-
veloped to analyze image data efficiently. However, the spatial
information in the images will get lost and lead to the ”Picasso”
problem [24, 25]. For maintaining the spatial information of the
features through the neural network processing, the capsule neu-
ral network and its variants were proposed [22, 25, 26]. Recent
studies also found that sparse shift layers can also preserve the
spatial information efficiently [20, 27]. Another way to improve
the prediction accuracy is to maintain the high resolution rep-
resentation of the input image through the whole process [18].
However, keeping the high-resolution features through the neu-
ral network processing poses high requirements for the comput-
ing device and lowers the overall prediction speed. Using a re-
gion proposal as the preprocessor and implementing a keypoint
detection neural network on the high-resolution proposals is an-
other alternative, but global features outside of the proposal get
lost [21]. Each of the above-mentioned approaches has its own
specific strengths and weaknesses. As such, the specific applica-
tion requirements need to be taken into consideration.
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3 PROPOSED APPROACH
The proposed cricothyroid membrane keypoint detection

neural network serves as the fundamental process for the
cricothyrotomy application. In this application, the proposed
neural network needs to balance both the running time and the
prediction accuracy of the processing of high-resolution images.
To solve the dilemma of speed and accuracy, a hybrid architec-
ture, including one low-resolution region proposal ensemble and
one high-resolution keypoint detection ensemble, is proposed, as
shown in Fig. 3. The tensor size is presented in the form of
height×width× channel in the rest of the paper, expressing the
height, width, and channel numbers of the tensor. The default
channel size is 1 and it will not be shown. These numbers are
determined by hyperparameters tuning during the training pro-
cess.

Region Proposal Ensemble
The regional proposal ensemble takes in the low-resolution

image with the size of 48×72, Il , compressed from the original
image of size 1024×1536×3, I, to propose the ROI, ROI, out of
a predefined 12×12 grid. Il first pass through an hourglass model
to efficiently generate the global features of size 48× 72× 128,
F. F is further reduced by following convolutional layers to the
size of 12× 12× 8. A sequence of sparse shift layer operations
is performed to roll the resulting features in either the horizontal
or vertical direction, as shown in Fig. 4. The shifted features are
then concatenated to a combined feature map, Fs . Fs , embedded
with spatial information, which is then passed through convolu-
tional layers to generate a 12×12 heatmap, HROI , presenting the
predicted region-of-interest.

Centered by the predicted ROI, a larger-region high-
resolution image, IR, is cropped from the original images.
To preserve the global cues for the final prediction, the low-
resolution features surrounding the ROI with a larger span, FR,
is also fed into the second ensemble along with IR.

Keypoint Detection
The resulting cropped image from the region proposal en-

semble is of size 256× 384× 3 while the cropped features is of
size 128× 192× 128. The Keypoint Detection Ensemble takes
in both the IR and FR, but at different depth levels of the neural
network to make a final prediction. IR passes one bottleneck in-
side the first hourglass module [19] and then concatenated with
FR. These combined features then pass through the rest of the
two stacked hourglass module to generate the heatmap, HR, of
size 64×96. The peak value point in HR represents the predicted
location of the cricothyroid membrane. The regional heatmap
is then padded to the global coordinate and generates the global
heatmap, H, of size 256×384.

The training process is divided into two separate procedures,
the training procedure of the region proposal ensemble and the

Table 1. The Diversity Statistics of the Subjects in the Dataset

Race Age Gender
Mongoloid 6 18-21 2 Male 10
Caucasian 2 22-25 7
Negroid 5 26-29 4 Female 3

training procedure of the keypoint detection ensemble. In the
training procedure of the region proposal ensemble, the model
takes in Il as the input and generates HROI as the output. The
best weights of the region proposal ensemble, θ̃rp , are stored
and used for the training procedure of the keypoint detection en-
semble. In the training procedure of the keypoint detection en-
semble, two ensembles are connected as a single end-to-end net-
work. This neural network takes in I as the input and produces
H as the output. In this procedure, only the parameters inside the
keypoint detection ensemble, θkd , are trainable while the param-
eters of the region proposal ensemble are fixed as θ̃rp . Both the
parameters of the region proposal ensemble and the keypoint de-
tection ensemble are updated by minimizing the objective func-
tions during the training process, which are introduced in the
following section.

In the final deployment of the proposed neural network, the
region proposal takes in the compressed images as the input and
generates HROI and F as output. IR and FR, cropped from I
and F separately according to the HROI , are fed into the key-
point prediction model as the input to predict HR. HR is then
padded back into the global heatmap, H, according to the spatial
information provided by HROI .

4 EXPERIMENTS
Cricothyroid Membrane Dataset

To train and validate the proposed cricothyroid membrane
keypoint detection neural network, a dateset containing 16,415
images is created with the pixel location information of cricothy-
roid membrane on each image. The dataset contains images from
13 subjects among different genders, races, and ages to guarantee
the diversity of the data, as shown in Tab. 1

A Kinect V2 [28] is used to collect the RGB image data
from the subjects, as shown in Fig. 5. (A). Each subject is asked
to rotate their neck about three different directions: 1) rotate the
neck from side to side, 2) extend the neck to lift the chin upward,
3) bend the neck laterally to bring the ear to the shoulder, as
shown in Fig. 5. (B-G).

For each of the above three motions, images are captured
from different points of view. The points of view are decided by
the combinations of the different relative height of the camera to
the subject, h, the relative horizontal distance, w, and the angle
between the neutral axis of the camera and the one of the subject,
ψ.A summary of these combinations is provided in Tab. 2. A
scene from the image collection process is shown in Fig. 5.

In the process of the image collection, the camera captures
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Figure 3. Proposed Hybrid Neural Network (HNNet)

Table 2. Summary of shooting angles, distance and height

Angle, ψ [−90◦ ,−45◦ , 0◦ , 45◦ , 90◦]
Distance, w [0.75m, 1.25m]

Height, h [−0.5m, 0m, 0.5m]

50 images for each combination. A total 58,500 images are cap-
tured in the image collection and 16,145 images that provide un-
obstructed views of the human face and neck area are selected to
build the dataset.

To make the annotation of the dataset efficiently and accu-
rately, a user-friendly MATLAB based Graphical User Interface
(GUI) labeling program is built, as shown in Fig. 6 (A C). In

Figure 4. Shift layer operation

this program, the position of the keypoint in pixel is labeled (if
visible), and three different levels of visibility can be selected in
this labeling process: ’0’ (invisible in the image), ’1’ (visible,
with no distinct feature), and ’2’ (visible, with distinct feature).
The detailed mouse and keyboard operations required during the
labeling process are explained in Fig. 6 (D).

Training Process and Results
Among all of the images in the dataset, 3283 of them (20%)

are randomly selected for the validation dataset, and 13,123 are
selected for the training dataset. The original RGB images col-
lected from Kinect v2 have a resolution of 1080× 1920× 3. To
fit the size of the neural networks, they are cropped around the

Figure 5. (A) A scene of image collection process, (B-G)
Demo of Degree-of-freedom of neck movements on (B-C) Yaw
axis, (D-E) Pitch axis and (F-G) Roll axis
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center to the size of 1024× 1536× 3. To augment the dataset,
processes of rotation(−30 ∼ 30 degrees), scaling(0.8 ∼ 1.2),
transportation(0 ∼ 1/2 of the distance from the keypoint to each
edge) are performed to the original images, followed by normal-
ization to 0 ∼ 1.0 on each RGB channel.

For the region proposal models, the groundtruth is a one-hot
map with a single high bit as labeled ROI. Let xi ∈ R2 be the
location of the ROI. The value, Si , of each pixel, x ∈ R2, of the
one-hot map is expressed as follows.

Si =

{
1 if x = xi
0 otherwise

(1)

For the keypoint detection models, the groudtruth are heatmaps
with 2-D Gaussian centered on the keypoint location. Let xj ∈ R2

be the position of keypoint. The value, Sj , of each pixel, x ∈ R2,
of the of heatmap is expressed as follows:

Sj = exp

(
−
|| x− xj | |22

σ2

)
(2)

Where σ is a constant that controls the spread of the high
bits.

The neural networks are trained using Keras [29] with Ten-
sorflow [30] as the backend on a NVIDIA Xp GPU. All models
are trained for 20 epochs.

To evaluate the proposed region proposal model, a single
hourglass model [19] and a stacked hourglass model [19] are also
trained on the same dataset with the same input and output size,
48× 72 and 12× 12, respectively. To fit the GPU memory and
optimize the performance of the training process, the batch size

Figure 6. (A-C) Screenshots of MATLAB GUI for label-
ing process for cases when the visibility level of the keypoint
lableled as (A) ’2’, (B) ’1’, (C) ’0’, and (D) The instructions to
label the image with GUI

Table 3. Summaries of Training Processes and Validation Re-
sult of Region Proposal Model

Models PRP a Single Hourglass Stacked Hourglass
Training process (%)

Batch size 32 32 24
Training parameter 3,505,827 3,426,163 6,562,470

Prediction Accuracy (%)b

PPD=0 c 73.1 69.5 70.0
PPD=1 99.7 99.4 99.6

Running Time (ms)d 23.4 12.9 21.0

a PRP stands for proposed region proposal model
b Based on results of prediction of 1946 images from validation dataset with CTM

labeled as visible.
c PPD=n stands for the percentage of the images that the euclidean distance

between predicted position of CTM and the ground truth is less than n pixels.
d The average time taken for single prediction on one image. (The models run on

1000 images in total).

is set as 32 for the proposed region proposal model and the single
hourglass model, and 24 for the single stacked-hourglass-model.
An optimizer, RMSprop with learning rate of 5e−4, is chosen
for all of the models. A margin loss function is deployed for
calculating the training loss for the region proposal model, as
follows:

MarginLoss = errtrue + errother (3)

where

errtrue = (
1
n
)

n∑
i=1

ytrue · (1− ypredict2)) (4)

errothers = (
1
n
)

n∑
i=1
(1− ytrue · (ypredict2)) (5)

The number of trainable parameters of the proposed region
proposal model is 3,505,827. Summary of the training details of
the models are provided in Tab. 3.

The Ladder Capsule Network [22] was also tested as another
region proposal model. The network was originally created for
classification of the image in MNIST dataset, with the input size
of 28× 28. The dynamic routing algorithm implemented inside
the network requires a larger space compared to other models.
As a result, it could not be implemented within a limited compu-
tation unit for applications with large-resolution inputs and rich
intermediate features.

To evaluate the proposed keypoint detection model, High-
Resolution Network(HRNet) [18] and stacked hourglass network
[19] are trained with the input size and the output size 256×358
and 64× 96, respectively. The batch size of all these models is
8. Mean square error (MSE) was selected as the loss function, as
follows:

MSE = (
1
n
)

n∑
i=1
(ytrue − ypredict )

2 (6)

We chose RMSprop with the learning rate of 5e−4 to op-
timize the models. The number of the trainable parameter of
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Table 4. Summaries of Training Processes and Validation Re-
sults of Keypoint Detection Models

Models HNNet Hourglass HRNet HNNet*a

Training process (%)
Training parameter 6,626,162 6,562,370 1,453,376 —

Prediction Accuracy (%)b

PPD=5 c 29.1 7.9 1.1 30.0
PPD=10 61.7 26.3 5.7 64.0
PPD=20 78.3 64.9 19.7 80.9
PPD=30 84.3 82.5 37.7 87.1

Running Time (ms)d 23.4+28.8 26.4 20.0 —

a The performance of HNNet when the correct Region of Interest is fed into the
keypoint detection model.

b Based on results of prediction of 1946 images from validation dataset with
CTM labeled as visible.

c PD (pixel deviations) stands for euclidean distances in pixels, and PPD=n

stands for the percentage of the images with PD between predicted position
of CTM and the ground truth is less than n pixels.

d The average time taken for single prediction on one image. (The models run
on 1000 images in total).

HNNet is 6,626,162. Training details of the models are provided
in Tab. 4.

The precision of the region proposal models is evaluated us-
ing two different measures: PPD=0, which represents the per-
centage of the prediction that the prediction locations of ROI are
exactly the same as the groundtruth; and PPD=1, which repre-
sents the percentage of the prediction that the prediction loca-
tions has a deviation of less than or equal to 1 pixel in both x
and y directions compared with the groundtruth. As long as the
deviation of less than or equal to 1 pixel, the correct ROI would
be included in the cropped image. We consider the situation as
acceptable.

The evaluation results of the models are presented in Tab.
3. All the prediction accuracies are based on the prediction of
1946 images from the validation dataset with CTM labeled as
visible. It shows that PPD=0 and PPD=1 of the proposed region
proposal network model are 73.1% and 99.7%, which are the
highest among the three models. With 1000 frames predicted in
total, the average time to predict on each frame of the proposed
region proposal network is 23.8 ms.

To evaluate the performance of the keypoint detection mod-
els, Euclidean distance between the predicted position of the
cricothyroid membrane and the labeled position is used to cal-
culated the pixel deviation:

d =

√
(x− k · (xp −

1
2
))2+ (y− k · (yp −

1
2
))2 (7)

Where x,y is the location of the groundtruth keypoint on the
original high-resolution image, and xp,yp is the predicted loca-
tion transformed back to the original high-resolution image. k
is the scale factor from the neural network output to the original
image. The evaluation result is shown in Tab. 4. PDn stands for
the percentage of the frames that the Euclidean distance between
the predicted position of CTM and the ground truth is less than n
pixels. PD5 to PD30 provides measures of precision among dif-

ferent stringencies. The maximum Euclidean distance is set to be
30 pixels since a deviation of the estimated position of cricothy-
roid membrane in real-world coordinates should be no more than
0.5 cm.

The results show that HNNet achieves a PD30 of 84.3%.
The performance of HNNet is highly dependent on the prediction
of the region proposal model, although a PD1 as high as 99.7%
guarantees that almost every image can be cropped with the re-
gion around cricothyroid membrane included. We also tested the
performance of the keypoint detection procedure by feeding the
correct Region of Interest into the model. The last column in
Tab. 4 shows that PD30 can reach 87.1% using a correct cropped
region.

The proposed neural network is deployed in GPU and the
running time is invariant to the number of cricothyroid mem-
brane shown on the image, with runtime complexity of O(1). It
takes 52.2 ms for HNNet to predict on a single frame, with 1000
frames tested in total. The prediction time consists of two por-
tions: 23.4 ms for the proposed region proposal ensemble, and
28.8 ms for the proposed keypoint prediction. It would allow the
two ensembles to run on two computers synchronously and thus
shorten the running time.

5 CONCLUSION AND FUTURE WORK
In this paper, we proposed a Hybrid Neural Network

model(HNNet) that achieved high accuracy and high efficiency
on the task of real-time CTM keypoint detection. Existing mod-
els that depend on either very deep neural networks or maintain-
ing high-resolution representations of images haven’t achieved a
good trade-off between prediction precision and running speed.
Our proposed network further explored this dilemma and im-
proved precision by taking in the high-resolution image without
requiring large computations. 84.3% of the predictions had devi-
ations of less than 30 pixels in the validation dataset, and 61.7%
of them had deviations of less than 10 pixels. The model can
also be adapted to a wide range of applications that require high-
precision keypoint detection.

HNNet serves as the perception process of the proposed au-
tonomous first-aid airway management system. Robotic manip-
ulation that is capable of basic behaviors and using a cricothyro-
tomy kit tool will be learned using reinforcement learning. The
integrated system, including both perception and control, will be
set up. Experimental validation with a full-size medical manikin
will be performed to validate the research on autonomous first-
aid airway management. The setup of the system is shown in
Fig. 7.
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Figure 7. Setup of the Proposed Autonomous First-aid Air-
way Management System in A) Lateral view B) Top view
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