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This paper presents the dynamic modeling and fuzzy sliding mode control for rigid-flexible
multibody systems. To investigate the dynamic stiffening of rigid-flexible systems, a first-
order approximate model of a flexible spacecraft system is formulated by using Hamilton’s
principles and assumed mode method, taking into account the second-order term of the
coupling deformation field. For highly flexible structural models, ideal surface sliding that
produces pure rigid body motion may not be achievable. In this paper, the discontinuity in
the sliding mode controller is smoothed inside a thin boundary layer using fuzzy logic
technique to reduce the chattering phenomenon efficiently. Sliding mode control is insen-
sitive to parameter variations and provides complete rejection of disturbances, but these
advantages only hold in the sliding mode domain. However, when the actuators’ ampli-
tude is limited by their physical constraints, the sliding mode domain will be restricted to
some local domain near zero on the switching surface. Control input saturation is also
considered in the fuzzy sliding mode control approach. The new features and advantages
of the proposed approach are the use of new dynamic equations for the motion of flexible
spacecraft systems and the design of fuzzy sliding mode control by taking into account
the control input saturation. The classical sliding mode control case is also developed
for comparison. Numerical simulations are performed to validate the proposed
methods and to demonstrate that rotational maneuvers and vibration suppression are
accomplished in spite of the presence of model uncertainty and control saturation
nonlinearity. [DOI: 10.1115/1.4004581]
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1 Introduction

Mechanical systems operating at high-speed can produce a phe-
nomenon referred to as dynamic stiffening due to the coupling
between rigid motion and elastic deflection [1], and traditional
dynamic analysis techniques can hardly deal with this. Recent
research activities indicate that the second-order term in the cou-
pling deformation field has a “stiffening” effect on the system’s
frequencies [1–3]. In this paper, we take into account the second-
order term of the coupling deformation field, and obtain the first-
order approximate model (FOAM) of a flexible spacecraft model.

Modern space exploration is leading to ever more demanding
performance criteria, such as high rotational speeds and large
angular maneuverability, increased precision, and pointing accu-
racy. Several recent studies on linear and nonlinear control of flex-
ible satellites have been performed [4–7].

Sliding mode control (SMC) is recognized as a powerful theo-
retical technique for robust control, even under variations in sys-
tem parameters or the presence of external disturbances [8].
Several representative research works are available in the litera-
ture on SMC theory [9–16]. For different mission objectives,
various control techniques have been developed and compared
[13–16]. SMC for a three axis rotational maneuver of a highly
flexible spacecraft model is proposed in Ref. [13], where the
control structure takes the flexibility effect into consideration. A
sliding mode attitude control algorithm with an exponential time-
varying sliding surface is designed in Ref. [14], which guarantees
the occurrence of the sliding mode at the beginning and eliminates
the reaching phase of time-invariant SMC. Fuzzy control is used

in Ref. [15] to approximate the equivalent control of SMC via reg-
ulation rules in the presence of the satellite parameter uncertain-
ties and external disturbances. Fuzzy rules are employed to
smooth the sign function in Ref. [6]. In order to prevent the pres-
ence of input saturation from significantly degrading the system’s
performance, a saturation compensator is designed in Ref. [16] for
the sliding mode attitude control system. Nevertheless, research
work on the FOAM of flexible spacecrafts remains rare [7].

The robustness of SMC only holds in the sliding mode domain
(SMD) on all switching surfaces, which is easily satisfied without
input saturation. However, in reality, spacecraft actuators’ ampli-
tude is practically limited by physical constraints. Therefore,
SMD is not the whole switching surface and will be restricted to
some local domain near zero on the switching surface. The motion
outside the SMD is so-called “bang-bang” motion, which lacks
any robustness. Thus, the design of an SMC input that is con-
strained by saturation is studied in this paper. Also, by using fuzzy
logic (FL) techniques, the discontinuity in the sliding mode con-
troller is smoothed inside a time-varying boundary layer so as to
reduce the chattering phenomenon efficiently.

2 Equations of Motion and Kinematics

Figure 1 depicts a model for slewing flexible spacecrafts with a
rigid central hub and two elastic beams attached to it. The beams
represent structural elements of a spacecraft such as an on-board
antenna and solar arrays. Although the design approach of the
present work can be applied to multiaxial maneuvers, only single-
axis maneuvers are considered in this paper for simplicity. The
spacecraft is controlled by a torque T on the rigid hub. When the
spacecraft is maneuvered, the elastic members connected to the
hub undergo structural deformation.

The coordinate axes XY and xy in Fig. 1 are defined as the iner-
tial and reference frames, respectively. u

*

P denotes the flexible
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deformation vector at point P with respect to the xy frame, while
r
*

A is the radius vector of point A on the hub and h is a rigid body
coordinate. After deformation, point P0 moves to point P.

The beam is characterized by a length L, with material proper-
ties E and q denoting the modulus of elasticity and the mass per
unit volume of the beam, respectively, and cross-sectional proper-

ties A and I denoting the beam cross-sectional area and the area
moment of inertia, respectively.

The deformation vector up can be represented by the following
expression [3]:

up ¼ u1 u2ð ÞT¼ w1 þ wc w2ð ÞT (1)

where w1 represents the pure axial deformation of the centroidal
axis and w2 denotes the transverse deformation along the y-axis of
the reference frame xy. The second-order term wc is defined as

wc ¼ �
1

2

ðx

0

@w2

@x

� �2

dx (2)

It should be noted that this term can have a significant impact on
the beam’s dynamic equations when it undergoes large rigid-body
motion.

By applying Hamilton’s principles, the first-order model
(FOM) of the flexible spacecraft can be written as

ðL

0

qAw1 � 2qA _h _w2 � qA€hw2 � qA _h2 rA þ w1 þ xð Þ � EAw001

n o
dx ¼ 0

ðL

0

qA €w2 þ 2qA _h _w1 þ qA€h rA þ w1 þ xð Þ � qA _h2w2 � EIw00002 þ qA
@

@x
w02

ðL

x

B n; tð Þdn

� �� �
dx ¼ 0

2

ðL

0

qA €h rA þ xð Þ2þw2
1 þ w2

2 þ 2 rA þ xð Þ w1 þ wcð Þ
h i

þ rA þ w1 þ xð Þ€w2

nn
�w2 €w1 þ 2 _h rA þ xð Þ _w1 þ _wcð Þ þ w1 _w1 þ w2 _w2½ �

o
dxþ Jh

€h ¼ T

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(3)

where

B x; tð Þ ¼ � _h2 rA þ xþ w1 þ wcð Þ � 2 _h _w2 þ €w1 þ €wc � €hw2 (4)

The boundary conditions are

w1 0; tð Þ ¼ 0; w2 0; tð Þ ¼ 0; w01 0; tð Þ ¼ 0

EIw002 L; tð Þ ¼ 0; EAw01 L; tð Þ ¼ 0; EIw0002 L; tð Þ ¼ 0

)
(5)

Then, by using Assumed Mode Method (AMM) and deleting the
high order terms of the generalized coordinates, the FOAM of the
flexible spacecraft model can be derived as

Mhh Mhq1
Mhq2

Mq1h Mq1q1
0

Mq2h 0 Mq2q2

2
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3
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€h
€q1

€q2

2
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5þ 2 _h
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0

2
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3
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2
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h

q1

q2

2
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3
75 ¼

Qh

Qq1

Qq2

2
64

3
75þ

s

0

0

2
64
3
75 (6)

where Mhh 2 R1 is the rotary inertia of the system and
Mq1q1

2 Rn�n and Mq2q2
2 Rn�n are the beam’s generalized elastic

mass matrices. Mhq1
2 R1�n, Mhq2

2 R1�n, Mq1h2 Rn�1, and
Mq2h2 Rn�1 represent the nonlinear inertia coupling between the
motion of the reference frame and the elastic deformations.
Kq1q1

2 Rn�n and Kq2q2
2 Rn�n are the generalized elastic stiffness

matrices that are shown to be affected by both the motion of the
reference frame and the elastic deformations. Qh, Qq1

, and Qq2
rep-

resent inertia forces and s ¼ T is the external rotational torque.
q1 tð Þ and q2 tð Þ represent the vectors of the generalized coordinates
for axial and transverse displacements, respectively. Gq1q2

and

Gq2q1
are constant matrices resulting from gyroscopic effects. It

should be noted that in transitioning from Eq. (3) to Eq. (6), T, w1,
and w2 were replaced by s, q1, q2, /1, and /2, such that s ¼ T,
w1 ¼ /1q1, and w2 ¼ /2q2 with /1 and /2 defined after Eq. (22).
The matrices in Eq. (6) are given as follows:

Mhh ¼ Jh þ Jb þ qT
1 M1q1 þ qT

2 M2q2 þ 2V1q1 � qT
2 Dq2 (7)

Mq1h ¼ MT
hq1
¼ �Rq2 (8)

Mhq2
¼ MT

q2h ¼ V2 þ qT
1 R (9)

Mqiqi
¼ Mi i ¼ 1; 2 (10)

Gq1q2
¼ �GT

q2q1
¼ �R (11)

Kq1q1
¼ K1 � _h2M1 (12)

Kq2q2
¼ K2 � _h2M2 þ _h2D (13)

Qh ¼ �2 _h qT
1 M1 _q1 þ qT

2 M2 _q2

� 	
þ V1 _q1 � qT

2 D _q2

h i
(14)

Qq1
¼ _h2VT

1 (15)

where Jb is the rotational inertia of the flexible appendages about
the hub’s center and Jh is the rotational inertia of the central rigid
body.

The nonlinear coupling between the rigid-body motion and the
elastic deformation in Eq. (6) can be easily seen. The underlined
terms in Eqs. (7), (13), and (14) result from the coupling deforma-
tion field. The newly established Eqs. (23)–(32) are called the
FOAM, and the equations without the underlined terms are called
traditional linear approximate model (TLAM).

Fig. 1 Flexible spacecraft model
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The constant coefficients and matrices in Eqs.(7)–(15) are

Jb ¼
ðL

0

qA rA þ xð Þ2dx (16)

K1 ¼
ðL

0

EA
@/1 xð Þ
@x

� �T@/1 xð Þ
@x

dx (17)

K2 ¼
ðL

0

EI
@2/2 xð Þ
@x2

� �T
@2/2 xð Þ
@x2

dx (18)

Mi ¼
ðL

0

qA/T
i /idx; i ¼ 1; 2 (19)

Vi ¼
ðL

0

qA rA þ xð Þ/idx ; i ¼ 1; 2 (20)

D ¼
ðL

0

qA rA þ xð ÞS xð Þdx (21)

R ¼
ðL

0

qA/T
1 /2dx (22)

where matrices K1 2 Rn�n and K2 2 Rn�n are the conventional
stiffness matrices, and Mi 2 Rn�n( i ¼ 1; 2) are generalized elastic
mass matrices. Matrix D results from the second-order term of the
coupling deformation field given by Eq. (2), and matrix R results
from gyroscopic effects. /1 and /2 represent the vectors of the ad-
missible functions of axial displacement and transverse displace-
ment, respectively. S xð Þ is derived from wc and is represented by

S xð Þ ¼
ðx

0

@/T
2 nð Þ
@n

@/2 nð Þ
@n

dn (23)

It is important to note that matrix D is non-negative definite since
S xð Þ itself is non-negative definite as well.

A simplified first-order approximate model (SFOAM) of the
flexible spacecraft can be derived from FOAM by deleting the ele-
ments related to Qh, q1, and _q1. Therefore, Eq. (6) reduces to

Mhh Mhq2

Mq2h Mq2q2

� �
€h
€q2

� �
þ 0 0

0 Kq2q2

� �
h
q2

� �
¼ s

0

� �
(24)

where Mhh, Mhq2
(Mq2h), Mq2q2

, and Kq2q2
can be obtained by delet-

ing the elements related to q1 and _q1 in Eqs. (7), (9), (10), and
(13), respectively. The elements Qh, q1, and _q1 could be ignored
while obtaining SFOAM because the inertia forces Qh are much
smaller than the control input s, while q1 and _q1 are much smaller
compared to the other state variables q2, _q2, h, and _h. Recall that
q1 represents the axial displacement of the flexible appendage,
and as such it is very small compared to q2 and h(q2 represents the
transverse displacement of the flexible appendage and h represents
the angular displacement of the rigid central body). The small ele-
ment Qq2

is also deleted for simplicity.
It is noted that SFOAM will be used for the controller design.

3 Fuzzy Sliding Mode Controller Design

In order to maneuver the rotation angle from h0 to hd , we
design a control law u tð Þ which satisfies the following constraints:

lim
t!1

qi tð Þ ¼ lim
t!1

_qi tð Þ ¼ 0 i ¼ 1; 2;…; nð Þ
lim
t!1

h tð Þ ¼ hd; lim
t!1

_h tð Þ ¼ 0
(25)

3.1 Design of Sliding Mode Control. As the next step, the
design of Fuzzy Sliding Mode Control (FSMC) will be investi-
gated by using the Reaching Law Method [17] and FL. SMC has
evolved into a major design tool for controlling nonlinear systems,
but its inherent chattering is an obstacle in practice. In this section,

the Reaching Law Method and Fuzzy Time-varying Boundary
Layer Thickness are adopted to achieve a trade-off between track-
ing precision and robustness to modeling inaccuracies.

The following nonlinear system in a companion form is
considered

Plant : x nð Þ tð Þ ¼ f x; tð Þ þ b x; tð Þu tð Þ þ d tð Þ (26)

Model : x nð Þ tð Þ ¼ f̂ x; tð Þ þ b̂ x; tð Þu tð Þ (27)

where x ¼ x; _x;…; x n�1ð Þ
 �T
is the state vector, u tð Þ is the scalar

control input, and d tð Þ is the external disturbance. Assume that the
nonlinear function f x; tð Þ and dðtÞ are not exactly known, then

f x; tð Þ ¼ f̂ x; tð Þ þ Df x; tð Þ (28)

and

Df x; tð Þj j < F x; tð Þ
d tð Þj j < D tð Þ

(29)

where f̂ x; tð Þ, Df x; tð Þ, and F x; tð Þ represent the known model of
the system, model uncertainties, and upper bound for uncertain-
ties, respectively. D tð Þ is the upper bound of d tð Þ. Furthermore,
we assume that b x; tð Þ is not exactly known, then

0 < bmin < b x; tð Þ < bmax; b x; tð Þ 6¼ 0 8t (30)

and

b̂ x; tð Þ ¼ bminbmaxð Þ1=2
(31)

Let e ¼ x� xd ¼ ½ x� xd; _x� _xd; …; x n�1ð Þ � x
n�1ð Þ

d
� be the

tracking error and let us define a time-varying sliding surface s eð Þ
as

s eð Þ ¼
Xn

i¼1

ciei; cn ¼ 1; and ci > 0 (32)

where ei ¼ x i�1ð Þ � x
i�1ð Þ

d , for i ¼ 1; 2;…; n, and the characteristic
polynomial of Eq. (32) is Hurwitz. The design parameters ci deter-
mine the response speed in the sliding mode and the steady state
response of the system, which will be discussed in Sec. 4.

Three approaches for specifying the reaching condition have
been proposed [18] as follows:

(a) The direct switching function approach, with the condition

s _s < 0 (33)

(b) The Lyapunov function approach, with the condition

s _s < �g sj j (34)

where g is a positive constant.

(c) The reaching law approach, with the condition

_s ¼ �gsgnðsÞ � ks (35)

where g and k are positive constants. The reaching condi-
tion provided in Eq. (33) is global, but does not guarantee a
finite reaching time. On the other hand, the reaching laws
described in Eqs. (34) and (35) not only have global charac-
teristics but also guarantee a finite reaching time.

A thin boundary layer in the neighborhood of the switching sur-
face is used here to smooth out the control discontinuity as shown
in Fig. 2, thus eliminating chattering

B x; tð Þ ¼ fx; j s x; tð Þj � / tð Þg / tð Þ > 0 (36)
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When all trajectories that start inside /0 t ¼ 0ð Þ remain inside / tð Þ
for all t � 0, we interpolate u tð Þ inside / tð Þ as illustrated in Fig. 3.

In the case of variable boundary layers, the control input u tð Þ in
Eq. (26) is made to satisfy the following reaching condition [19]:

s _s � � g� _/
� 

sj j (37)

where g is a strictly positive constant and / tð Þ is the boundary
layer thickness.

Comparison of Eqs. (37) and (34) shows that because of the
added term _/ sj j, the boundary layer attraction condition is more
stringent during boundary layer contraction ( _/ < 0) and less
stringent during boundary layer expansion ( _/ > 0) [19].

By differentiating Eq. (32) and rearranging it using Eq. (26),
we obtain

_s ¼
Xn�1

i¼1

cieiþ1 � x
ðnÞ
d þ f x; tð Þ þ b x; tð Þu tð Þ þ d tð Þ (38)

Also, by combining the reaching condition given by Eq. (37) and
the reaching law from Eq. (35), we obtain a novel reaching law
with time-varying boundary layer as follows:

_s ¼ � g� _/
� 

sat s=/ð Þ � ks (39)

where

sat s=/ð Þ ¼ s=/ ; for s=/j j � 1

sgn s=/ð Þ ; for s=/j j > 1

�
(40)

The advantage of the proposed novel reaching law described by
Eq. (13) is to reduce chattering by tuning the parameters g and k
[8]. The boundary layer here is used to achieve a trade-off
between tracking precision and robustness.

The control input can be derived from Eqs. (26), (27), and (39)
as follows:

u tð Þ ¼ û tð Þ � b̂�1 x; tð Þk x; tð Þsat s=/ð Þ (41)

û tð Þ ¼ b̂�1 x; tð Þ x
ðnÞ
d �

Xn�1

i¼1

cieiþ1 � f̂ x; tð Þ � k
Xn

i¼1

ciei

" #
(42)

where

k x; tð Þ ¼ b�1 x; tð Þb̂ x; tð Þ F x; tð Þ þ D tð Þ þ g� _/ tð Þ
h i

þ b�1 x; tð Þb̂ x; tð Þ � 1
�� �� û tð Þj j (43)

Note that

b�1 x; tð Þb̂ x; tð Þ � b

where b ¼ bmax=bminð Þ1=2
. Equation (43) can be rewritten as

k x; tð Þ � b F x; tð Þ þ D x; tð Þ þ g� _/ tð Þ
h i

þ bþ 1ð Þ û tð Þj j (44)

It can be seen that the control parameter k has been increased in
order to account for the uncertainty on the control gain b, parame-
ter uncertainty, and disturbance.

3.2 Design of Fuzzy Boundary Layer. The introduction of
the boundary layer around the switching surfaces reduces chatter-
ing at the cost of increasing the tracking error. The variable
boundary layer is a popular solution to this problem. In this sec-
tion, FL is used to improve the performance of the sliding mode
controller. The fuzzy boundary layer leads to a strategy that
involves the adjustment of the boundary thickness automatically.
This fuzzy system adopts the sliding surfaces s and _s as the inputs
and the boundary layer thickness / as the output.

The Multiple Input-Single Output rule base is presented in Ta-
ble 1, where ZR, SS, MM, and LL are used as abbreviations for
zero, small, medium and large, respectively.

The input=output fuzzy membership functions are shown in
Fig. 4.

The results interpreted by the fuzzy rule are shown in Fig. 5,
which shape the thickness of the boundary layer.

3.3 Design of Linear Switching Line With Bounded
Inputs. In this section, the sliding mode domain and the reaching
domain of SMC are investigated with bounds on the control
action. We aim at achieving robustness in the maximized sliding
mode domain on the switching surfaces.

First, we consider the design of SMC for the following single-
input Linear Time Invariant (LTI) system with bounded input

_x ¼ Axþ Bu uj j � K; K > 0 (45)

Fig. 3 Control interpolation in the boundary layer

Table 1 Fuzzy rules for s, _s, and /

/

sj j

ZR SS MM LL

_sj j ZR ZR ZR SS SS
SS ZR SS SS MM

MM SS SS MM LL
LL SS MM LL LL

Fig. 2 The boundary layer
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The state vector x is n-dimensional, A and B are constant matrices
of appropriate dimensions. A linear switching surface is selected
as

s :¼ Sx ¼ 0 (46)

where S is n-dimensional vector, SB ¼ 1, and n� 1ð Þ poles of the
equivalent system are stable

_x ¼ I � BSð Þx (47)

where I is a unity matrix.
The choice of the following control law:

u ¼ �SAx� KsgnðsÞ; K > 0 (48)

guarantees that the trajectory of the solution of Eq. (45) globally
reaches on to the switching surface given by Eq. (46) within a fi-
nite time and is constrained on it. In this case, the closed-loop sys-
tem is represented by the following reaching law [17]:

_s ¼ �Ksgn sð Þ (49)

which satisfies the following reaching condition:

s _s < 0 (50)

On one hand, when the input of the system described by Eq. (45)
is constrained by severe saturation, the control law (48) cannot be
applied directly. On the other hand, control inputs for real systems
are always bound to saturate, but studies on SMC from this per-
spective are rare [7,8].

We first investigate the design of SMC for LTI systems whose
inputs are constrained. That is, for a single-input LTI system as
described by Eq. (45), where the input is constrained in advance
based on the following condition:

uj j � K; K > 0 (51)

The following bounded control law

u ¼ �KsgnðsÞ (52)

is considered. The question therefore is how to select the switch-
ing surface s xð Þ ¼ 0 in order to maximize the sliding mode
domain.

As preliminary consideration, the following definitions are
given.

Definition 1 (Ref. [3]). If, for any x0 on the switching surface
s ¼ 0, we have x(t) on s ¼ 0 for all t > t0, then x(t) is a sliding
motion or sliding mode of the system.

Based on the above definition, the following three definitions
are derived:

Definition 2. A domain D on the switching surface s ¼ 0 is a
sliding mode domain (SMD) if every point on it undergoes the
sliding motion.

Definition 3. A domain M in the state-space is a reaching do-
main (RD) if the reaching condition given by Eq. (50) is satisfied
in the domain.

Definition 4. A domain M in the state-space is an inescapable
reaching domain (URD) if the motion starting from any initial
state within M reaches on to SMD within a finite time T.

Concerning the above definitions, the following statements hold
true:

• With the input constraint described in Eq. (51), the SMD is
not necessarily the whole switching surface, and it is often re-
stricted to some local domain near zero in the state-space.

• The SMD is a subspace of the switching surface, in which the
reaching condition is satisfied.

• A point inside the URD does not necessarily satisfy reaching
conditions, that is, RD is a subspace of URD.

The closed-loop system can be viewed as Lur’e-type system.
Namely, a memoryless nonlinear feedback as provided by Eq.
(52) to the forward LTI system belongs to the sector [0,1). If the
transfer function of the linear subsystem is so-called positive real,
then it possesses important properties which may lead to the gen-
eration of a Lyapunov function for the whole system.

The following two lemmas describe a positive linear system
and its stability:

Lemma 1 (Ref. [18]). A minimum realization of the following
LTI system

G sð Þ ¼ C sI � Að Þ�1Bþ D (53)

is given by

_x ¼ Axþ Bu

y ¼ Cxþ Du
(54)

The system described by Eq. (54) is strictly passive if GðsÞ is
strictly positive real.

Lemma 2(Ref. [18]). The following strictly passive system is
considered:

_x ¼ f x; uð Þ
y ¼ h x; uð Þ

(55)

The origin of _x ¼ f x; 0ð Þ is globally asymptotically stable if a stor-
age function of the system given by Eq. (55) is radial unbounded.

Fig. 4 Membership functions for s, _s, and /

Fig. 5 3D plot of s, _s, and /
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Based on the Lemmas and Definitions presented above, global
stabilization of the LTI system (45) by the bounded control given
by Eq. (52) is considered. The following theorem is valid.

Theorem. For the system given by Eq. (54), if A is Hurwitz and
A;Bð Þ is controllable, then by choosing the stable switching

surface

s xð Þ :¼ Sx ¼ 0 (56)

where SB ¼ 1 and S;Að Þ is observable, the SMD becomes

D :¼ x Sx ¼ 0j ;�K < SAx < Kf g (57)

and the URD is the whole state-space.
Proof. First, concerning definition 2 and the linear switching

surface described in Eq. (56), we have

_s ¼ S Axþ BKð Þ > 0 s < 0

_s ¼ S Ax� BKð Þ < 0 s > 0

�
(58)

That is,

� K < SAx < K

Therefore, the SMD is as given by Eq. (57).
Second, concerning the fact that the LTI system is a minimum

realization of the strict positive transfer function given by Eq. (53)
[19]; according to Lemma 1, the LTI system is strictly passive. A
radial unbounded Lyapunov function can be chosen as a storage
function by using KYP lemma as provided in Ref. [18]. Therefore,
according to Lemma 2, it is guaranteed that the closed loop sys-
tem is globally exponentially stable. So if a ball N near zero is
considered such that

N x; cð Þ :¼ x 2 Rnj xk k � cf g (59)

where

0 < c � K

SAk k ; (60)

the initial state from any point of the state-space reaches inside
the ball within a finite time. That is, the initial state from any point
of the state-space approaches the SMD given by Eq. (57) within a
finite time.

The control approach given by Eq. (52) guarantees that the tra-
jectory of the solution starting from any initial state of the system
described in Eq. (45) reaches on to the sliding mode domain (57)
on the switching surface within a finite time and approaches zero
thereafter.

In order to illustrate, a rigid spacecraft undergoing single-axis
maneuver will be investigated for simplicity. Its equation of
motion is given by

J €h ¼ T (61)

where J is the rotational inertia of the rigid spacecraft and T is a
constant rotational torque, which is constrained by

Tj j � U; U > 0 (62)

Without loss of generality, it is assumed that the flexible space-
craft maneuvers start at an initial angle h0 and end at final angle
hd ¼ 0. A linear switching line is defined as

s ¼ _hþ ch; c > 0 (63)

where c is the slope of the linear switching line, which cannot be
chosen arbitrarily with bounded inputs.

As shown in Fig. 6, P1 and P2 are the initial points h0; 0ð Þ in
the phase plane. With the restriction on the input as described in
Eq. (62), based on the above theorem, the following expression
can be derived showing that the SMD on the switching line is
restrained to the local domain AB near zero

DSMD ¼ h; _h
� 

_hþ ch ¼ 0; hj j <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 � 2UJc2h0

p
� U

Jc2

�����
�����

�����
( )

(64)

The SMD is maximized when the optimized coefficient c is chosen
as

c� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

3U

2J h0j j

s
(65)

4 Simulations and Results

In this section, simulation results for the dynamics of flexible
spacecrafts are obtained using MATHEMATICA, VISUAL C and
MATLAB=SIMULINK software. A slewing maneuver of a spacecraft is
used to demonstrate the applicability of the FSMC in Secs. 2 and 3.
A fourth-order Runge-Kutta program with adaptive step-size is
used to numerically solve the differential equations. The physical
parameters of the flexible hub-beam system are shown in Table 2.

4.1 Free Vibrations of the Flexible Spacecraft
System. Consider the flexible spacecraft model, as shown in
Fig. 1. The free vibration mode of the FOAM and TLAM will be
investigated. The angular velocity of the hub starts from zero and
follows the following profile:

_h ¼
w0

T
t� w0

2p
sin

2p
T

t

� �
; 0 � t � T

w0; t > T

8<
: (66)

where T ¼ 10 sec, and w0 ¼ 6 rad=s.
Figure 7 shows the tip deflection of the beam using the two

models. It can be seen from the figure that a there is a significant
deviation between the tip deflections when using TLAM (dashed
line) compared to FOAM (solid line).

As can be seen from Fig. 7, the amplitude of the resulting tip
deflection using the TLAM approach becomes much larger than
that of the FOAM at t ¼ 3:5 s. Furthermore, the resulting tip
deflection using the TLAM approach has exceeded the initial

Fig. 6 sliding mode domain on linear switching line

Table 2 Physical parameters

Property Symbol Value

Beam length L 12 m
Mass per unit volume q 2.8� 103 kg=m3

Cross-Section A 7.5� 10�5 m2

Young’s modulus E 7.0� 1010 N=m2

Beam area moment of inertia I 7.2� 10�9 m4

Hub moment of inertia Jh 500 kg �m2

Hub radius r 0.5 m
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assumption of small deformations. Because the second-order term
in the deformation field is not included, the elastic stiffness matrix
may be negative definite and the system becomes unstable. From
the above result, it is shown that the second-order term in the de-
formation field can have a significant effect on the dynamic
behavior of flexible multibody systems at high-speeds. In fact, it
can be calculated that the critical angular velocity is 2.2 rad=s
[20]. If the angular velocity of the rotating central body exceeds
the critical angular velocity, the deformation of flexible appen-
dages will be infinite. It can be concluded that TLAM is invalid in
describing the deformation of flexible multibody systems in high-
speed cases.

4.2 Fuzzy Sliding Mode Control of the Flexible Spacecraft
Model. By rearranging Eq. (24), the following expression is
derived:

Mhh �Mhq2
M�1

q2q2
Mq2h

� 
€h ¼ sþMhq2

M�1
q2q2

Kq2q2
q2 (67)

The control input can be obtained the same way Eq. (41) was
derived, namely

s ¼ û tð Þ � b̂�1 x; tð Þk x; tð Þsat s=/ð Þ (68)

where

û tð Þ ¼ � Mhh �Mhq2
M�1

q2q2
Mq2h

� 
c _h�Mhq2

M�1
q2q2

Kq2q2
q2 (69)

k x; tð Þ ¼ b F x; tð Þ þ D tð Þ þ g� _/ tð Þ
h i

þ bþ 1ð Þ û tð Þj j (70)

and

f x; tð Þ ¼
Mhq2

M�1
q2q2

Kq2q2
q2

Mhh �Mhq2
M�1

q2q2
Mq2h

(71)

The proposed controller derived from SFOAM is used for “rest-
rest” attitude maneuvering of FOAM. Our aim is to maneuver the
attitude of the spacecraft from h0 ¼ 2 rad to hd ¼ 0 and suppress
the flexible vibration simultaneously. The control parameters are
selected as F x; tð Þ ¼ 0:5 f̂ x; tð Þ

�� ��, b̂ ¼ 1, b ¼ 2, D tð Þ ¼ 0, g ¼ 0,
c� ¼ 0:2, and K ¼ 50 Nm.

Although we are dealing with an infinite-dimensional system, it
is impossible to use infinite number of modes in the simulation. To
make the simulation more meaningful, the following two measures
are taken: (i) a relative large number of flexible modes is chosen in
the FOAM, which is used for the simulation; (ii) feedback signals
associated with flexibility are assumed to be of the first mode since
the lower frequency component is dominant [20]. Thus, the
assumed modes n of FOAM and SFOAM are chosen as 5 and 1,
respectively.

Figure 8 shows the attitude angle of the flexible spacecraft.
According to that figure, it can be concluded that attitude angle
control was accomplished in the closed-loop system. When c is
chosen as 0.5, the time response of the attitude angle has an over-
shot, whereas when c is chosen as 0.1, a longer settling time is
depicted.

In the control of the flexible appendage, we are mainly interested
in the motion of the tip, as described in Fig. 9. It can be observed
that larger or smaller c values exhibit large tip deformations. Thus,

Fig. 7 Tip displacement response of the flexible appendages
using FOAM and TLAM approaches

Fig. 8 Attitude angle

Fig. 9 Tip deformation of flexible appendages

Fig. 10 Time-varying boundary layers

Journal of Dynamic Systems, Measurement, and Control NOVEMBER 2011, Vol. 133 / 061012-7



the parameter c discussed in Sec. 3.3 not only meets precision crite-
ria of attitude angle but also exhibits small tip deformation.

Figure 10 shows that the thickness of the boundary layer /
decays with time when using fuzzy logic. It can also be seen from
the bounded control input shown in Fig. 11 that the use of bound-
ary layer eliminates the chattering and generates a continuous
control scheme.

Simulations were performed for both functions sgn(*) and
sat(*) with boundary layers. It is clear from the tip displacement
of the flexible appendage shown in Fig. 12 that (a) the residual
vibration amplitude for the controller with sat(*) is much smaller
than that of sgn(*); (b) the tip displacement is reduced using
FSMC based on TLAM; however, it is still larger than that based
on FOAM; (c) the tip displacement of FOAM is smaller than that
of TLAM using FSMC, which can be attributed to dynamic stiff-
ening effects. Namely, as can be seen in Eq. (13), the underlined
term increases the stiffness matrix of FOAM when the flexible
spacecraft undergoes attitude maneuvers, which acts as a
“stiffening” effect. Moreover, the angular velocity of the flexible
spacecraft does not exceed 0.4 rad=s, which is less than the critical
angular velocity. It can be concluded that FSMC based on FOAM
has better effect on reducing the tip displacement.

5 Conclusions

This paper presented the development of the first-order approxi-
mate model, traditional linear approximate model, and simplified
first-order approximate model for rigid-flexible multibody sys-
tems. Free vibrations of the first-order approximate model and tra-
ditional linear approximate model were investigated to illustrate
the validity of the first-order approximate model when experienc-
ing high rotational speeds. The proposed control law was exam-
ined using fuzzy logic and sliding mode control theories with
input saturation. Numerical simulations were provided to show
the effectiveness of the proposed controller for rotational maneu-
vers and vibration suppression in spite of the presence of model
uncertainty and control saturation nonlinearity.
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