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The dual-rod slider rocker mechanism is equivalent to two traditional single-rod sliders
that share a common rocker, where the sliders translate along two opposite directions.
Unlike a single-rod system, the dual-rod mechanism is unique, in the sense that the two
sliders do not translate the same distance for the same rocker rotation. In this paper, an
optimal kinematic and dynamic analysis of the dual-rod slider rocker mechanism is pre-
sented. This analysis is supplemented by an application to modular robotic coupling, in
which the mechanism is employed by a torque recirculation scheme to enable three inde-
pendent modes of operation via a single motor. Simulation, finite element analysis, and
experimental results validate the kinematic properties of this mechanism, the rigidity of
the proposed docking interface, and its three modes of operation. We conclude that the
compactness of the dual-rod mechanism, and its unique kinematic properties, exhibits a
broad industrial value for applications where size and weight are a critical design con-
straint, such as space and mobile robotics. [DOI: 10.1115/1.4023178]

Keywords: dual-rod slider rocker mechanism, kinematic analysis, dynamics, multi-
objective optimization, rigid active docking, finite element analysis

1 Introduction

In today’s industry, the single-rod slider crank or rocker mecha-
nism largely dominates applications where a rotary motion is con-
verted into a translation, or vice versa. The most common
example of these applications is in the automotive industry, where
the single-rod slider-crank mechanism represents a fundamental
component of internal combustion engine technology [1]. In con-
trast, the industrial applications of the dual-rod slider rocker
mechanism, which represent an interesting variation of the single-
rod system, remain unexplored.

From a structural perspective, the dual-rod mechanism consists
of two symmetric single-rod sliders that share a common rocker,
where the translation of the sliders occurs in opposite directions.
As will be shown in this paper, the kinematic properties of this as-
sembly are unique, in the sense that the two sliders do not travel
the same distance for the same rocker rotation. This means that
the time-dependant position of one slider will, at all times, either
lead or lag the position of the other slider throughout the com-
bined stroke.

Traditionally, the broad industrial applications of the single-rod
slider system motivated a continual research effort to understand
its kinematic and dynamic properties [2–9], even for less common
variations of the traditional design [10,11] with flexible rods
[12–15] or spatial slider trajectories [16–19]. In contrast, and to
the best knowledge of the authors, no work has been reported on
the kinematic and dynamic characteristics of the dual-rod system
due to its limited industrial applications.

Nonetheless, with the recent developments in space applica-
tions and mobile robotic technology, there has been a greater
demand for new mechanisms that are either compact, or enable
the initiation of multiple tasks via a single actuator, or sometimes
even both. This trend is driven by the continual desire to develop
mechanical systems (such as mobile robots) that deliver maximum
power with the smallest and lightest assembly possible.

The dual-rod slider rocker mechanism stands out as one of these
systems that can have significant applications in space and robotic
technology, where a rotary motion of a single actuator is con-
verted into a translation of multiple sliders. The main advantage
of this mechanism is attributed to its minimal footprint. This foot-
print is considerably smaller than other mechanical systems that
enable the translation of multiple sliders via a single motor, such
as the leadscrew mechanism [20,21].

In this paper, the kinematic and dynamic properties of the dual-
rod slider rocker mechanism are introduced. Because the sliders
of this system translate at two different rates for the same rocker
rotation, a multi-objective optimality analysis is formulated. The
solution of this analysis generates optimal rod dimensions that
enable the sliders to meet terminal spatial boundary conditions
(BC). Indeed, because of this relative displacement offset, the
dual-rod system is mostly relevant to applications where the
sliders’ translation is constrained to meet terminal boundary con-
ditions at the same time, while tolerating minimal relative dis-
placement offset in the intermediate stroke. A potential
embodiment of these applications is sliding doors, where two
doors driven by a single actuator are simultaneously required to
meet the open and close boundary conditions, irrespective of any
relative translation offset that may exist in the intermediate stroke.

The sample robotic application proposed in this paper for the dual-
rod slider rocker mechanism is docking interfaces for modular
robotics. In fact, a recent research trend in the field of mobile
robotics has seen an increased interest in reconfigurable robots
[22–24] due to their small individual size, and their projected adapt-
ive mobility and manipulation capabilities on rough terrain. The
main merit of the proposed coupling interface lies in its ability to
provide structural non-back-drivability for high-payload active dock-
ing applications, while maintaining a compact assembly by recircu-
lating motor torque to accomplish three tasks via a single motor.

This torque recirculation scheme is enabled by a dual-rod slider
rocker mechanism, which allows the interface to operate in three
independent modes. In the drive mode, the interface drives the
module. In the clamp mode, the interface enables the module to
rotate relative to its neighbors in the formation. In the neutral
mode, the motor torque aligns the mating elements prior to dock-
ing. The design details of this interface are presented in this paper,
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along with a finite element force analysis that validates its struc-
tural non-back-drivability. Simulation and experimental results
further demonstrate the kinematic properties of the dual-rod
mechanism, and the interface’s proposed modes of operation.

2 Kinematics of the Dual-Rod Slider Rocker

Mechanism

A schematic of the dual-rod slider rocker mechanism and its ki-
nematics are depicted in Figs. 1 and 2, respectively. The top and
bottom rods connect a single rocker, driven by a single actuator,
to two sliders which translate along two parallel rails, guided by
linear bearings, where the top slider moves in the opposite direc-
tion of the bottom slider.

Because the motion of the sliders is constrained to a pure trans-
lation along the rails, the kinematic dependency between the rock-
er’s angle and the top and bottom rod angles can be expressed in
terms of h1 as

sinðh2Þ ¼
l1 sinðh1Þ þ b

l2

(1)

sinðh02Þ ¼ sinðp� h02Þ ¼
l1 sinðh1Þ þ b0

l02
(2)

These equations enable the derivation of two expressions for the
translation of the top and bottom sliders as a function of h1. These
can be written for the top slider as

y ¼ l1 cosðh1Þ þ l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l1 sinðh1Þ þ b

l2

� �2
s

� c� h (3)

and for the bottom slider as

y0 ¼ l1 cosðh1Þ � l02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l1 sinðh1Þ þ b0

l02

� �2
s

� cþ h0 (4)

where based on the reference frame X0Y0, y > 0 and y0 < 0.

From Eqs. (3) and (4), it is obvious that the displacement differ-
ence between the top and the bottom sliders, defined as
e ¼ yþ y0, is not equal to zero 8h1, even if the two single-rod
slider rocker mechanisms were designed symmetrically with
respect to the central plane. In such case, if b0; l02; and h0 were cho-
sen equal to b; l2; andh, respectively, the offset e becomes

e ¼ 2l1 cosðh1Þ � 2c 6¼ 0 8h1 (5)

which represents an explicit function of h1 that is not equal to
zero 8h1. This infers that the two sliders do not travel the same
distance for the same rocker rotation.

3 Optimal Kinematic Analysis

In this section, an optimal analysis for the generic design of the
dual-rod slider rocker mechanism is presented. In general, the off-
set e resulting from the kinematic properties of the dual-rod mech-
anism dictates applications where the two sliders are constrained
to meet terminal BC at the same time, while tolerating minimal
relative displacement offset in the intermediate stroke. For these
boundary conditions to be met, the dimensions of the mecha-
nism’s rods should be derived as a solution to the optimal problem
e ¼ 0jBC.

At first, a general expression for e can be written in terms of the
12 parameters that define the dual-rod slider rocker mechanism, as
illustrated in Fig. 2

e ¼ f ðh1; b; l1; l2; b
0; l02; h; h

0; c; h1;y0
; h1;y max; ymaxÞ (6)

This expression can be subsequently reduced by considering the
geometric constraints and the kinematic dependencies that exist
between the different parameters in (6). For this, one should first
select a single-rod slider rocker mechanism as a reference for
ensuing optimality analysis.

If the top rod/slider assembly is selected as a reference, the first
objective will be to increase the force transmission efficiency by
maximizing the push/pull (Y0-axis) component of the force trans-
mitted to the top slider via the top rod. This can be accomplished
by choosing the smallest value of b and the largest value of h that
the top slider’s dimensions can accommodate.

Similarly, the rocker parameters c; l1; andh1;y0
can be selected

to meet other geometric constraints imposed by the mechanism
design. For instance, one can chose a combination c; l1; h1;y0

� �
that prevents the rocker angle from exceeding a certain threshold
imposed by the design, such as preventing the tip of the rocker
from interfering with the frame of the mechanism at y ¼ y0 ¼ 0
(an example of such consideration will be given in Sec. 6.2.3).
These selected parameters enable the calculation of an analytical
expression for l2 as

l22 ¼ l21 þ b2 þ ðcþ hÞ2

� 2l1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ ðcþ hÞ2

q
cos h1;y0

þ tg�1 b

cþ h

� �� �
(7)

which enables the derivation of an implicit quadratic equation in
h1;ymax

as

Fig. 1 Isometric schematic and corresponding kinematic dia-
gram of the dual-rod slider rocker mechanism

Fig. 2 Kinematics of the dual-rod slider rocker mechanism
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p cosðh1;ymax
Þ � b sinðh1;ymax

Þ ¼ p2 þ l2
1 � l22 þ b2

2l1

¼D q (8)

whose solution generates an analytical expression for h1;ymax

h1;2
1;ymax

¼ sin�1 �qb6p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � q2 þ b2

p
b2 þ p2

 !
(9)

where in (9), p ¼ cþ hþ ymax. The two solutions in (9) corre-
spond to the elbow up and elbow down configurations of the top
rocker/rod assembly. Typically however, in the presence of termi-
nal open boundary conditions, only the elbow up solution (h1

1;ymax
)

will be feasible since the translation of the sliders will be
restrained to a maximum stroke threshold defined by ymax, thus
preventing the elbow down configuration from occurring. As such,
ymax represents another design parameter that is selected to define
the stroke length of the top and bottom sliders as dictated by the
mechanism’s application.

With these selected values, the offset expression will be
reduced to e ¼ f ðh1; b

0; l02; h
0Þ. However, since e remains a direct

function of h1, there exist no unique values for b0; h0; l02
� �

that
meet the condition e ¼ 08h1. Nonetheless, the error e can be mini-
mized at the boundaries to generate optimal dimensions for the
bottom rod which enable the sliders to simultaneously meet the
open and close boundary conditions.

The consideration of the close BC y0 ¼ 0jh
1;y0

enables the deri-
vation of an analytical expression for l02 as

l02
2 ¼ l2

1 þ b02 þ ðc� h0Þ2

� 2l1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b02 þ ðc� h0Þ2

q
cos tg�1 b0

c� h0

� �
þ h1;y0

� �
(10)

which guarantees the nonviolation of the close (central plane)
boundary condition 8b0; h0. The substitution of (10) into (4), and
(7) into (3) yields a final expression for e as

eðh1;b
0;h0Þ ¼ 2l1 cosðh1Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
2�ðl1 sinðh1Þþ bÞ2

q
� 2c� h

þ h0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b02þðc� h0Þ2þ l2

1� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b02þðc� h0Þ2

q� �

l1 cos h1;y0
þ tg�1 b

0

c� h0

� �� �� �
�ðl1 sinðh1Þþ b

0 Þ2

vuuuuuut
(11)

which can be minimized to calculate the optimal pair ðb0; h0Þopt

that enables the dual-rod mechanism to meet the open boundary
condition y0 ¼ ymaxjh1;y max

.
However, the cost function defined in (11) alone is not enough.

In fact, similar to the choice of b and h, the optimal pair ðb0; h0Þopt

should also maximize the force transmission efficiency of the bot-
tom slider rocker mechanism defined by the cost function

fðh1; b
0; h0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l1 sinðh1Þ þ b0

l02

� �2
s

¼
0FBrodð ÞY0

0FBrod

(12)

where 0FBrod defines the force transmitted by the bottom rod and
expressed in the reference frame X0Y0, and 0FBrodð ÞY0

the compo-
nent of 0FBrod along the Y0-axis.

Moreover, because the error e is left unbounded in the interme-
diate stroke, one should also cap the supremum of the set
eðh1; b

0; h0Þ to an acceptable threshold d whose value represents a
design compromise between the maximum allowable offset e and
the minimum acceptable efficiency f. This consideration, along
with the two cost functions defined in (11) and (12), can be aggre-
gated into a multi-objective optimization problem stated as follows:

Min
b0 ;h02X

eðh1; b
0; h0Þj j

h1;ymax

Max
b0 ;h02X

fðh1; b
0; h0Þjh1;ymax

subject to sup eðh1; b
0; h0Þj j < d

and the set of geometric constraints X ¼
b0min � b0 � b0max

h0min � h0 � h0max

�
(13)

where b0min, b0max, h0min, and h0max determine the geometric range of
allowable values of b0 and h0 as dictated by the desired dimensions
of the bottom slider. Those geometric constraints ensure that the
optimal solution of (13) corresponds to a rod/slider joint location
that is contained in the X0Y0 cross-section of the slider (i.e., that
the rod-slider joint is not outside the slider). In (13), eðh1; b

0; h0Þj j
denotes the absolute value of e since the displacement offset could
fluctuate between a positive and a negative threshold.

4 Optimal Solution: A Case-Study

The optimality problem formulated in (13) can be resolved
deterministically if one cost function is converted into an inequal-
ity constraint. The choice for this candidate function is based on a
priority decision that takes into account the physical connotations
of the solution. That is, since it is a design requirement to ensure
that e ¼ 0 at h1;ymax

, then maintaining e < e at h1;ymax
(e� 1) takes

priority over maximizing fð%Þ at h1;ymax
to above a minimum

threshold. The alternative approach where the multi-objective
problem is either solved as a set of Pareto optimal points [25], or
where the objective is to maintain f > fmin causes the optimal solu-
tion to minimize the offset e to an unspecified threshold. This
threshold is not necessarily near zero, which in such case will cause
the solution to violate the open terminal boundary condition.

Therefore, by converting eðh1; b
0; h0Þ to an inequality constraint,

a full control over the magnitude of e at the boundary is given
through the value of e, and the optimality problem in (13) can be
restated as

Max
b0 ;h02X

fðh1; b
0; h0Þjh1;ymax

subject to gðh1; b
0; h0Þ ¼

eðh1; b
0; h0Þj jÞ

h1;ymax

< e

sup eðh1; b
0; h0Þj j < d

(

and the set of geometric constraints X ¼
b0min � b0 � b0max

h0min � h0 � h0max

�
(14)

A case-study solution for (14) is shown in Fig. 3, for
18:5 � b0 � 26:5 and 10:5 � h0 � 14:4, with b ¼ 18:1 mm,
h ¼ 14:1 mm, c ¼ 19 mm, l1 ¼ 17:7 mm, h1;y0

¼ 27 deg,
h1;ymax

¼ �4:05 deg, ymax ¼ 11mm, and d ¼ 0:6 mm. This solution
space S is visualized as part of a meshed space K (S � K, where
K is the meshed space of X) of three subsets, where the optimal
subset containing all pairs ðb0; h0Þ that meet the constraints
gðh1; b

0; h0Þ is cascaded between an upper and a lower subset con-
taining the pairs ðb0; h0Þ that meet at best one constraint in g.

The difference between the upper and the lower subsets is in
the magnitude of the efficiency f. The lower subset delivers effi-
ciencies that are either lower or comparable to those correspond-
ing to the optimal subset. The upper subset generates efficiencies
that are comparable or higher than the efficiencies of the optimal
subset. However, because such higher efficiency comes at the
expense of the constraints which are violated in the upper subset,
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the optimal pair b0; h0ð Þopt
that maximizes the efficiency without

violating any constraints is selected near the top edge of the opti-
mal subset at b0 ¼ 21:02mm, h0 ¼ 14:39mm, with f ¼ 35:5% for
the selected case-study (Fig. 3). We note that the boundaries
defining the optimal subset are inclusive of this subset.

5 Dynamics of the Dual-Rod Slider Rocker

Mechanism

The dynamic formulation of the dual-rod slider rocker mecha-
nism is outlined in this section to validate the feasibility of the
optimality analysis presented in Secs. 3 and 4. That is, for a given
torque or velocity input to the rocker, a solution of the equations
of motion is derived to demonstrate the ability of the mechanism to
simultaneously reach the terminal boundary conditions in the
upward and downward strokes, while capping the relative displace-
ment offset to the specified threshold d in the intermediate stroke.

5.1 Equations of Motion. The free body diagram of the
dual-rod slider rocker mechanism is as shown in Fig. 4. Based on
this diagram, the conservation of the rocker’s linear and angular
momentum generates the following dynamic equations of motion:

Fx0
þ Fx1

þ F0x1
¼ M1

0€xG1

Fy0
þ Fy1

� F0y1
¼ M1

0€yG1

� Fx1
þ F0x1

	 

l1 cos h1 � Fy1

� F0y1

	 

l1 sin h1 þ s ¼ JA0

0 €h1

(15)

where Fx0
, Fy0

, Fx1
, Fy1

, F0x1
, and F0y1

are external forces acting on
the rocker and the rods, and expressed in the global frame of refer-
ence (Fig. 4). JA0

defines the polar moment of inertia of the rocker
relative to its joint, s the torque acting on the rocker, and
€xG1
; €yG1

ð Þ the acceleration components of the rocker’s center of
gravity relative to the global frame.

Similarly, the conservation of linear and angular momentum
applied to the top and bottom rods, respectively, generates equa-
tions of motion for the top rod of the form

Fx2
� Fx1

¼ M2
0€xG2

Fy2
� Fy1

¼ M2
0€yG2

Fx2
l2 � l

G2

	 

cos h2 � Fy2

l2 � l
G2

	 

sin h2

þ Fx1
l

G2
cos h2 � Fy1

l
G2

sin h2 ¼ J0
G2

€h2 (16)

and for the bottom rod of the form

F0x2
� F0x1

¼ M02
0€xG0

2

� F0y2
þ F0y1

¼ M02
0€yG0

2

F0x1
l0

G2
cos h02 þ F0x2

l02 � l0
G2

	 

cos h02

þ F0y1
l0

G2
sin h02 þ F0y2

l02 � l0
G2

	 

sin h02 ¼ JG0

2

0 €h02 (17)

Fig. 3 Meshed solution space of the optimal problem in (14)

Fig. 4 Free body diagram of the dual-rod slider rocker
mechanism
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In these equations, Fx2
, Fy2

, F0x2
, and F0y2

define the external forces
acting on the top and bottom rods, respectively, as shown in
Fig. 4, JG2

and JG0
2

the polar moments of inertia of the top and bot-
tom rods relative to their respective centers of gravity, and
ð€xG2

; €yG2
; €xG0

2
; €yG0

2
Þ the acceleration components of the center of

gravity of the top and bottom rods relative to the global frame. lG2

and l0G2
define the distance separating the center of mass of the top

and bottom rods from their joint axes, respectively (Fig. 4).
For the sliders on the other hand, the dynamic motion is con-

strained to a translation along the rails, which simplifies the equa-
tions of motion for the top slider to

FR � Fx2
¼ 0

Ffrict � Fy2
¼ M3

0€yG3

(18)

and for the bottom slider to

F0R � F0x2
¼ 0

F0y2
� F0frict ¼ M03

0€yG0
3

(19)

where FR and F0R are the reaction forces,Ffrict and F0frict are the
sliding friction forces acting on the top and bottom sliders, respec-
tively. ð€yG3

; €yG0
3
Þ represent the acceleration components of

the center of gravity of the top and bottom sliders relative to the
global frame. These acceleration components, along with the
accelerations of the rocker and the rods, can be expressed explic-
itly in terms of h1; h2; h

0
2 and their first and second order deriva-

tives, as follows:

0€xG1
¼ lG1

_h2
1 sin h1 � lG1

€h1 cos h1

0€yG1
¼ �lG1

_h2
1 cos h1 � lG1

€h1 sin h1

(20)

0€xG2
¼ �l1

€h1 cos h1 þ l1
_h2
1 sin h1 þ lG2

€h2 cos h2 � lG2
_h2
2 sin h2

0€yG2
¼ �l1

€h1 sin h1 � l1
_h2
1 cos h1 � lG2

€h2 sin h2 � lG2
_h2
2 cos h2

(21)

0€xG0
2
¼ �l1

€h1 cos h1 þ l1
_h2
1 sin h1 þ l0G2

€h02 cos h02 � l0G2

_h02
2 sin h02

0€yG0
2
¼ �l1

€h1 sin h1 � l1 _h2
1 cos h1 � l0G2

€h02 sin h02 � l0G2

_h02
2 cos h02

(22)

0€xG3
¼ �l1

€h1 cos h1 þ l1
_h2
1 sin h1 þ l

2
€h2 cos h2 � l

2
_h2
2 sin h2 ¼ 0

0€yG3
¼ �l1

€h1 sin h1 � l1 _h2
1 cos h1 � l0

2

€h2 sin h2 � l
2

_h2
2 cos h2

(23)

0€xG0
3
¼ �l1 €h1 cos h1 þ l1

_h2
1 sin h1 þ l0

2

€h02 cos h02 � l0
2

_h02
2 sin h02 ¼ 0

0€yG0
3
¼ �l1 €h1 sin h1 � l1 _h2

1 cos h1 � l0
2

€h02 sin h02 � l0
2

_h02
2 cos h02

(24)

The equations of motion (15)–(19), and the acceleration kine-
matics in (20)–(24), can be further aggregated in a matrix format
[26] of the following form:

CFðhÞ½ �23�120Fext þ Ds½ �23�10sext þ VðhÞ½ �23�20 _x

� M½ �23�80a ¼ Cxðh; _hÞ
h i23�1

(25)

where 0 _x ¼ 0 €h2
0 €h02

� �T
. In (25), CFðhÞ and Ds define the matrix

coefficients of external forces 0Fext and external torques 0sext,
respectively, VðhÞ the matrix coefficient of angular accelerations
of the top/bottom rods, M the mass matrix, and Cxðh; _hÞ the input
vector including the rocker’s angular velocity.

5.2 Dynamic Simulation: A Case-Study. A case-study solu-
tion of (25) is derived to validate the optimal analysis of the dual-

rod slider rocker mechanism, and the fact that the optimal rod
dimensions do enable the two sliders to simultaneously reach a
given terminal boundary condition, despite the relative displace-
ment offset that exists in the intermediate stroke. In this simula-
tion, the rocker is driven at a sample constant angular velocity
0 _h1 ¼ 15 deg =s, with a coefficient of static friction ls ¼ 0:29
applied to the sliding motion of the sliders along the rails (steel on
steel). Furthermore, the dimensions, masses, and polar moments
of inertia employed in this simulation are as summarized in Table 1.
These values are extracted from the computer aided design model of
the mechanism’s parts corresponding to the prototype application
presented later in Sec. 6.

The simulation of the scenario where the sliders are driven
down from the open to the close terminal boundary is visualized
in Fig. 5. In this figure, it is shown that the dimensions of the rods
resulting from the optimality problem in (14) enable the two
sliders to reach the close boundary condition (the central plane) at
the same time after �2.1 s. This interception at the central plane
happens, despite the relative translation offset that exists between
the two sliders as further highlighted in Fig. 5.

Because of this offset, the two sliders move and accelerate at
two different rates—albeit driven by the same motor—in order to
reach the same terminal position at the same time. This is shown
in Figs. 6 and 7, where the sliders’ velocity and acceleration pro-
files are plotted as a function of time.

Table 1 Summary of dimensions, masses, and polar moments
of inertia for the five links of the dual-rod slider rocker mecha-
nism in both the case-study dynamic simulation and the proof-
of-concept prototype of Fig. 9

Link
Length
(mm)

Location of
COG (mm)

Polar inertia
(g�mm2)

Mass
(g)

Rocker l1 ¼ 17:7 lG1
¼ 7:48 JA0

¼ 699 M1 ¼ 6:5
Top rod l2 ¼ 31:35 lG2

¼ 14:53 JG2
¼ 964 M2 ¼ 6:05

Bottom rod l02 ¼ 30:1 lG0
2
¼ 14:95 JG0

2
¼ 1177 M02 ¼ 9:1

Top slider N/A N/A N/A M3 ¼ 11:55
Bottom slider N/A N/A N/A M03 ¼ 11:26

Fig. 5 Displacements of top slider (y), bottom slider (y0), com-
bined stroke (y 2 y0), and relative translation offset plotted
versus time
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In Fig. 6 in particular, it is noted that the sliders alternate the
leading velocity in the intermediate stroke. This is depicted by the
profile of the velocity difference which fluctuates between a posi-
tive and a negative threshold. Moreover, this simulation proves
that the offset e remains capped to the threshold d, which com-
plies with (14), and further validates the optimality analysis
derived in Sec. 3.6.

6 Case-Study Application: Docking Interface

A robotic application of the dual-rod slider rocker mechanism
is proposed in this section. This application relates to docking
interfaces for modular robotics, where the dual-rod mechanism is
integrated in a torque recirculation scheme that enables three inde-
pendent tasks via a single high-torque motor. The configuration of
the dual-rod mechanism further ensures the rigidity, reversibility,
and non-back-drivability of the interface as will be discussed in
Sec. 6.4. These attributes, which cannot be provided by existing
magnetic [27–29] or shape memory alloy (SMA)-actuated cou-
pling interfaces [30–32], represent an essential component for
modular robotic mobility and manipulation on rough terrain.

6.1 Tristate Docking Interface: Design Overview. The pro-
posed coupling interface enables docking between two adjacent
modules in a chain architecture [23]. In this chain, the male part
of the interface (or the T-Mech: Translational Mechanism (Fig. 8))
consists of a translational docking shaft driven by a rack and pin-
ion mechanism and is carried by one module. The female part (or
the C-Mech: Clamping Mechanism (Fig. 9)) consists of a clamp-
ing system driven by a dual-rod slider rocker mechanism, and is
carried by another module in the formation. A simplified sche-
matic of this interface is shown in Fig. 8, and an animation of the

docking process for a sample three-module formation can be
found in Ref. [33].

The sliders of the dual-rod mechanism act as the clamps for this
docking system, and further carry external gear segments that
engage an internal gear carried by a coupler. In fact, the entire
dual-rod system fits inside a rectangular frame which in turn fits
inside the coupler, as shown in Fig. 9. This rectangular frame is
rigidly connected to a hollow main shaft which is driven by a cen-
tral high-torque motor via a central worm and worm gear assem-
bly. The coupler on the other hand is rigidly connected to the
driving system of the module. For instance, in Fig. 9, the coupler
is shown connected to the drive pulley of a small mobile robot.

The hollow main shaft enables the insertion of the docking
shaft toward the clamps until it is stopped by an appendix, best
shown in the transmission schematic of the interface in Fig. 10.
This shaft carries a hexagonal neck with interference holes which
mate with protruded pins (Fig. 8) carried by the corresponding
hexagonal aperture of the clamps. The location of the appendix
inside the C-Mech is defined in a way to cause the plane of
the pins to coincide with the plane of the holes when the shaft hits
the appendix. In such case, the alignment between the pins
and the holes will be reduced to a re-orientation of the sliders
around the docking shaft in the neutral mode.

The rocker that drives these clamps is actuated by a low-torque
selection motor via the C-Mech’s worm and worm gear assembly
which ensures the mechanical non-back-drivability of the sliders.
Power to the selection motor, the linear encoder that measures the
combined displacement of the sliders, and the C-Mech’s electron-
ics is provided by the modules’ battery. However, because of the
relative rotary motion between the C-Mech and the frame of the
module, two pairs of graphite brushes are integrated in the assem-
bly to create permanent spring-loaded contact with isolated copper
rims on two PCB boards. These two PCBs (PCB-F and PCB-C),
best shown in Fig. 10, funnel the current from the battery to the
C-Mech’s electrical components. Motor command and sensor data
are also communicated between the C-Mech and the module over
a wireless grid established with two X-Bee modules (2.4 GHz),
which enable the endless rotation of the C-Mech inside the
coupler.

6.2 Modes of Operation. The dual-rod slider rocker mecha-
nism, integrated as part of the docking interface, initiates a torque
recirculation scheme which enables the interface to operate in
three independent modes: drive, neutral, and clamp.

6.2.1 Drive Mode. In the drive mode, the sliders are moved
in the outward direction until the two external gear segments
engage the internal gear of the coupler as shown in Figs. 9–11(a).
This mode corresponds to the open terminal boundary condition

Fig. 6 Velocity profiles of the top and bottom sliders, and rela-
tive velocity difference, plotted as a function of time for
_h1 ¼ 158=s

Fig. 7 Acceleration profiles of the top and bottom sliders, plot-
ted as a function of time for _h1 ¼ 158=s

Fig. 8 Schematic of the coupling interface showing the dock-
ing shaft and the dual-rod slider rocker mechanism
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of the mechanism, which is reached simultaneously by the two
sliders as a result of the optimal design presented in Sec. 3. This is
further highlighted in Fig. 12, where linear encoder measurements
of the combined ascending stroke of the two sliders in the proof-
of-concept prototype (Figs. 9 and 11) are shown to closely match
the simulation results of the case-study optimality analysis pro-
vided in Sec. 5.2.

When this gear engagement occurs, the central motor torque,
transmitted to the C-Mech via the central worm and worm gear
assembly, will be redirected toward the coupler. This coupler’s
rotation is transmitted directly to the driving system of the module,
such as a pulley, since the two are rigidly connected together (Fig.
10). This provides mobility for the module via the central motor.

6.2.2 Neutral Mode. In the neutral mode (Figs. 10 and
11(b)), the sliders are positioned along the intermediate stroke to
disengage the internal gear, causing the C-Mech to rotate idly
inside the coupler. This idle rotation enables the orientation of the

clamps’ pins to the docking shaft’s interference holes prior to cou-
pling. The relative displacement offset between the two sliders in
the intermediate stroke is practically insignificant in this case,
since the clamps do not interact with any elements of the interface
in the neutral mode.

6.2.3 Clamp Mode. In the clamp mode (Figs. 10 and 11(c)),
the sliders are driven down toward the central plane which repre-
sents the close boundary condition for the dual-rod mechanism.
Here again, the optimal design of the dual-rod mechanism enables

Fig. 10 Transmission schematic of the tristate docking
interface

Fig. 11 Three modes of operation of the docking interface, and
the active revolute joint in the clamp mode: (a) Drive Mode, (b)
Neutral Mode, (c) Clamp mode

Fig. 9 Exploded schematic view of the tristate docking interface, its three modes of operation, and a proof-of-concept proto-
type shown connected to a small mobile robot (Central Motor: 50 W, 35 N m max. torque, Selection Motor: 15 W, 12 N m max.
torque)
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the two sliders to simultaneously reach the clamp mode in the de-
scending stroke, as further highlighted experimentally in Fig. 12.
This simultaneous interception enables the clamps’ combined
hexagonal aperture to mate with the neck of the docking shaft,
where the latter will be inserted by an adjacent module inside the
main hollow shaft of the module carrying the C-Mech (refer to the
video animation in Ref. [33]).

When mating between the pins and the interference holes is
established, a planetary motion is created around the docking
shaft, where the latter is held stationary by the adjacent module.
This mating converts the rotation of the central motor to a revolu-
tion of the module around this shaft which creates an active joint
for this motion. This mode, along with the drive and neural
modes, is demonstrated experimentally in the video file provided
in Ref. [34].

We also note that the length l1, the position c, and angle h1;y0
of

the rocker are chosen in a way to ensure that the rocker’s tip
remains contained inside the coupler’s circumference in order to
avoid interference with the ground in this mode.

6.3 Comparison With Other Embodiments. The advantage
of the dual-rod slider rocker mechanism over other non-back-driv-
able translational mechanisms, such as the leadscrew, lies in its
small projected footprint. This difference is visualized in the com-
parison depicted in Fig. 13.

In this figure, it is shown that the width of the C-Mech imple-
mented with the leadscrew adds �48% to the width of the C-
Mech configured with the dual-rod mechanism (for a rod length of
24 mm, the length of the nut stroke on the leadscrew is 21 mm for
ymax ¼ 11mm). This increase in width does not account for the
size of the second gear stage established by the worm and worm
gear assembly in the case of the dual-rod system. Indeed, if this
stage is added to the leadscrew option, the width of C-Mech nearly
doubles, making the interface impractical for modular robotics.

We note that in Fig. 13, the selection motor was placed in series
with the leadscrew in order to ensure that the C-Mech assembly
remains contained inside the circumference of the coupler. This
constraint is satisfied by the dual-rod system, where the motor
occupies the coupler’s lateral diametral space, and thus it should
also be satisfied by any other mechanism in order to provide com-

mon bases for comparison. A summary of additional embodiments
for the torque recirculation scheme is provided in Table 2.

6.4 Structural Non-Back-Drivability: Role of the Pins. In
addition to the mechanical non-back-drivability of the docking
interface provided by the C-Mech’s worm and worm gear assem-
bly, the protruded pins play a significant role in reinforcing the
clamp mode. This role is evident in the amplification of the yield
torque up to a threshold that satisfies the rigidity requirements of
an active joint for modular robotic applications with manipulation.
Herein, we define the yield torque as the maximum torque applied
to the active joint in the clamp mode at which a relative slip
between the docking shaft and the clamps occurs. This slip is due
to the separation of the clamps under excessive loading.

A finite element analysis of the dual-rod slider rocker mecha-
nism—shown earlier in the docking interface of Figs. 9 and 11—
highlights the role of the pins in this process. This analysis is
performed as an assembly, where an anchor boundary condition is
applied to the rocker (in the clamp mode, the rocker is stationary).
Contact constraints are subsequently applied to simulate the phys-
ical interaction between the different components of the actual

Fig. 12 Comparison of experimental and simulated optimal
displacement of the two sliders of the dual-rod mechanism in
the ascending and descending strokes. Note the conformity of
the two datasets, and the ability of the two sliders to simultane-
ously reach the terminal boundary conditions in both cases
(i.e., e 5 0 at both Open BC and Close BC).

Fig. 13 Width comparison of the C-Mech with (a) dual-rod
slider rocker mechanism and (b) lead screw mechanism

Table 2 Additional possible embodiments

Mechanism Shortcoming

Cam-follower Violates the non-back-drivability constraint due to
the rolling contact between the cam and the follower

Linear actuator Provides low actuation torque relative to its size.
Implementation may dictate two actuators to drive
both sliders independently
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mechanism in a way to make the entire assembly stationary rela-
tive to the anchor.

Two comparative simulations are performed on this model as
illustrated in Fig. 14. In Fig. 14(a), the pins were removed from
the clamps, and a contact constraint was defined between the hex-
agonal faces of the docking shaft and those of the combined hex-
agonal aperture of the clamps. The subsequent simulation shows
that separation occurs, despite the stationarity of the rocker, where
the gap separating the two clamps increases as a function of the
incremental torque applied to the docking shaft as illustrated in
Fig. 15(a).

This separation is due to the force component that the torque
acting on the docking shaft induces along the rails of the mecha-
nism. Such component forces the rocker to bend elastically, and
yield a separation gap k which can be written in terms of the dock-
ing shaft’s rotation angle u as

k ¼D 1� cosðuÞ þ cosð60� uÞ
2

� �

� D

2
sgnð30� uÞð Þ sinð30� uÞ (26)

where D denotes the diameter of the circumcircle of the docking
shaft’s hexagonal neck, and sgn the sign function. Thus, for the
docking shaft of the prototyped interface with a diameter
D ¼ 12mm, separation occurs at a gap k ¼ 1:6mm according to
(26), as further validated in the simulation results plotted in
Fig. 15(a) at a yield torque of 24 N m.

However, when the pins are introduced as shown in Fig. 14(b),
the force component along the rails is eliminated. This is due to
the action/reaction interaction between the pins and the interfer-
ence holes, where the rotation of the docking shaft that initiates
this force component along the rails is resisted by the pins, thus
preventing such component from happening. As a result, the
clamps cannot displace along the rails, and are rather twisted to-
gether as a rigid body under torsional loading.

More importantly however, the pins prevent the propagation of
the input torque from the docking shaft toward the rocker, and
ultimately toward the selection motor which drives the rocker
through the C-Mech’s worm and worm gear assembly. This
behavior is visualized in Fig. 15(b), where the twist of the
clamps—as a rigid body—propagates the stress toward the rails
instead of the rocker. Because the rocker is shielded in this pro-
cess, a minimal static torque will be required at the worm and

Fig. 14 Finite elements analysis of the dual-rod slider rocker mechanism in the clamp mode. (a)
Clamp separation gap at a torque of 23 N m without pins. (b) No separation with pins, and load
propagation toward the rails (input torque 45 N m).

Fig. 15 Rocker torque as a function of the torque applied on
the active joint in the clamp mode. (a) No pins, note the separa-
tion at 24 N m, (b) with pins.
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worm gear assembly to maintain the non-back-drivability of the
mechanism, thus making the yield torque of the interface a struc-
tural consideration that depends on the dimensions of the rails.
This property is further visualized in Fig. 15(b), which shows a
near zero ideal static torque at the rocker for an incremental input
torque up to 45 N m.

7 Conclusion

This paper presented an optimal design and dynamic analysis
of a new mechanism called the dual-rod slider rocker mechanism.
This mechanism enables the translation of two sliders via a single
rocker (motor), and is thus characterized by a small projected
footprint which broadens its industrial utility to applications
where size and weight are a critical design constraint, such as
space and mobile robotics. A sample application was reported in
this paper, where the mechanism was integrated in a docking
interface for modular robotics, as part of a torque recirculation
scheme that enables three independent modes of operation via a
single motor. A proof-of-concept prototype was developed, and a
finite element analysis was performed to demonstrate the ability
of the dual-rod mechanism to provide a high yield torque at the
active joint created by this interface in the clamp mode.

Such results represent the basis for our future investigations,
where we further integrate the dual-rod mechanism and test the ri-
gidity of the ensuing tristate coupling interface on a modular
robotic system for rough terrain mobility and manipulation, such
as STORM [33].
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Nomenclature (in reference to Fig. 2)

X0Y0 ¼ global Cartesian frame
l1; l2; l

0
2 ¼ length of the rocker, the top rod, and the bottom

rod, respectively
h1; h2; h

0
2 ¼ rocker angle, top rod angle, and bottom rod angle

relative to the Y0-axis, respectively
h1;y0

; h1;ymax
¼ rocker angle at y¼ 0 and y¼ ymax, respectively

b; b0 ¼ distance between Y0-axis and the top and bottom
rod/slider joint axis along X0-axis, respectively

h ¼ distance between the top rod/slider joint axis and
the bottom edge of the top slider, along Y0-axis

h0 ¼ distance between the bottom rod/slider joint axis
and the top edge of the bottom slider, along Y0-axis

c ¼ distance between X0-axis and the central plane,
measured along Y0-axis

y; y0 ¼ distance between bottom (top) edge of top (bottom)
slider and the central plane, measured along Y0-axis

ymax ¼ stroke length of each slider, also defined as the
position of the open terminal boundary condition

M1 ¼ mass of the rocker
M2;M

0
2 ¼ mass of the top and bottom rods, respectively

M3;M
0
3 ¼ mass of the top and bottom sliders, respectively
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