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SUMMARY
In this paper the tip-over stability of mobile robots during
manipulation with redundant arms is investigated in real-
time. A new fast-converging algorithm, called the Circles
Of INitialization (COIN), is proposed to calculate globally
optimal postures of redundant serial manipulators. The
algorithm is capable of trajectory following, redundancy
resolution, and tip-over prevention for mobile robots during
eccentric manipulation tasks. The proposed algorithm
employs a priori training data generated from an exhaustive
resolution of the arm’s redundancy along a single direction
in the manipulator’s workspace. This data is shown to
provide educated initial guess that enables COIN to swiftly
converge to the global optimum for any other task in the
workspace. Simulations demonstrate the capabilities of
COIN, and further highlight its convergence speed relative
to existing global search algorithms.

KEYWORDS: Global optimization; Inverse kinematics;
Redundancy resolution; Adaptive manipulation control;
Mobile robots, Tip-over instability.

Nomenclature

x0y0z0 Cartesian frame 0 attached to the base joint of the
arm.

xiyizi Cartesian frame attached to joint i+1.
Ci Center of frame xiyizi .
n Number of joints.
qi Generalized coordinate of link i measured relative

to inertial frame 0.
0η(q) Tilting moment of all combined forces generated

around the arm’s pivot (frame 0).
0ηs(q) Steady-state moment component of 0η(q),

normalized with respect to gravity.
i−1ηext

i Vector of external moments applied on link i and
expressed in frame I–1.

Gi Center of mass of link i.
li Length of link i.
lGi

Distance between Gi and the center of joint I–1.
0dGi Vector position of Gi expressed in frame 0

(0dGi ∈ R
3 × 1.)

* Corresponding author. E-mail: bentzvi@gwu.edu

i−1rGi
Vector position of Gi relative to frame i − 1

(i−1rGi ∈ R
3 × 1).

0aGi Linear acceleration of Gi relative to frame 0
(0aGi ∈ R

3 × 1).
0d̈Ci−1 Acceleration of the center of frame i − 1

relative to frame 0
i−1gi Gravity vector acting on link i and expressed

in frame I–1.
ab Linear acceleration vector of the mobile base

(ab ∈ R
3 × 1).

0Ri−1 Rotation matrix from frame I–1 to frame 0
(0Ri−1 ∈ R

3 × 3).
M0 Mass of the mobile base.
Mi Mass of link i.
d P Desired task, also defined as the desired

vector position of the end-effector relative to
frame 0 (d P = [Px Py Pz ]T ).

d P̃ Skew-symmetric matrix of d P (d P̃ ∈ R
3×3).

i−1Ti Homogenous transformation matrix mapping
frame i attached to joint i+1 into frame I–1
(i−1Ti ∈ R

4 × 4).
i−1IGi

Mass moment of inertia matrix of link i about
Gi expressed in frame I–1.

λT Vector of Lagrange multipliers.
� Displacement vector of the mobile base

relative to the desired position d P
(� ∈ R

3 × 1).
nFeff , nηeff Measurements of external forces and external

moments in the end-effector’s frame n,
respectively

1. Introduction
For mobile robots with manipulator arms, the maximum
payload capacity of the arm is dictated by the robot’s ability
to maintain dynamic stability during eccentric manipulation
tasks. In fact, the arm’s payload capacity is a direct function
of its joint posture, as the latter defines the eccentricity of the
combined external load relative to the platform’s pivot.

From a broad standpoint, the balance of a mobile platform
(including industrial hydraulic machines such as excavators1)
is determined by the tilting moment the arm and the applied
external load generate around the pivot axis of the mobile
base, compared with the stabilizing moment the weight of
the base generates around the same pivot. In the event where
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the tilting moment exceeds the stabilizing moment, the robot
will have the tendency to tip over.

In the literature, the problem of tip-over instability for
mobile robots is studied for applications where the arm
possesses a low order of kinematic redundancy, and where
the vehicle is following a winding trajectory (for example,
navigating around obstacles) while transporting an object
between two separate locations. For instance, the Zero
Moment Point (ZMP)2 method is proposed as an offline
solution for planning a robot’s motion along a given path.3–5

The ZMP is geometrically defined as the point on the ground
where the moments of all external forces applied onto the
robot are in static equilibrium. Thus, the objective of this
solution is to plan a priori motion and arm posture such that
the ZMP remains inclusive of the contact polygon created
between the robot and the ground.

A second perspective monitors the ground reaction forces
exerted on the robot’s wheels.6 The Zero Tire Upward
Force (ZETUF) method,7 for instance, states that tip-over
instability occurs if the sum of the ground reaction forces
acting on two adjacent tires of a four-wheel vehicle reaches
zero. Thus, by measuring or estimating these reaction forces,
it becomes possible to detect the regions of instability along a
given path. Alternatively, tip-over instability can be analyzed
as an explicit path planning problem, where the path of a
robot is generated for maximum load carrying capacity of
the manipulator arm.8 Such solution is derived as an explicit
optimal control problem using Pontryagin’s principle.9

By analyzing the state-of-the-art contributions to the
problem of tip-over instability, the following three limiting
properties are found to be dominant:

1. Offline solutions: Where the computational cost is not a
critical aspect of the numerical solution since the planning
problem is confined to an a priori trajectory for the mobile
robot and its arm.

2. Lack of online adaptability: Where the predictive
approach for planning the robot’s path on a tip-over free
trajectory does not account for the possibility of posture
adaptation in reaction to any unforeseen disturbances
along the path.

3. No consideration for end-effector manipulation: Where
most solutions consider the problem of tip-over instability
associated with object transportation along a pre-defined
path, but discard the onset of destabilization occurring
during end-effector manipulation from an inadequate
posture.

The objective of this paper is to address this third challenge
by incorporating the first and second as part of the solution.
In fact, in robotic applications, tip-over instability is more
likely to occur when a mobile robot is manipulating an
object from an inadequate posture, rather than during object
transportation, due to the relatively low speeds involved in the
motion of mobile robots. Thus, for autonomous applications,
a challenge arises with respect to the best position and
arm posture that a mobile robot should adopt during an
eccentric manipulation task. In this paper, we argue that such
problem should be resolved as an on-line reactive adaptive
manipulation scheme based on real-time measurements of
external loads instead of an offline predictive approach.

For redundant manipulator arms, adaptive manipulation
can be accomplished as a secondary task that supplements
the primary objective of inverse kinematics and trajectory
following through redundancy resolution. However, such
optimal problem formulation presents the following two
numerical challenges:

1. The mathematical redundancy generates a large number
of local solutions where only the smallest of them (the
global extremum) guarantees optimal stability. In fact,
the difference between a global and a local arm posture
when minimizing the tilting moment could mean the
difference between the robot maintaining balance during
a manipulation task or the robot losing balance and
toppling.

2. The practical necessity to minimize the secondary task at
the global level makes the iterative convergence speed a
primary consideration for on-line applications.

This convergence requirement is made even more
compelling given that gravity-based tip-over instability
occurs near-instantaneously, thus requiring an algorithm that
reacts swiftly to offset the risk of destabilization, and correct
the robot’s posture to ensure balance. However, existing
global solvers are characterized by a slow convergence
rate,10,11 which makes them undesirable for sensor-based
applications such as adaptive manipulation. This typically
favors local solvers, where redundancy12 is resolved locally
at either the velocity level13–20 or the position level.21–24

In this direction, this paper proposes a new algorithm called
Circles of Initialization (COIN), which is characterized by the
following five merits:

1. Global convergence: Where the algorithm uses the
a priori data to preserve the convexity of the search space.
This allows the inverse kinematic solution to converge to
the global optimum anytime such optimum exists.

2. Fast convergence: Which is enabled by initializing
the solution near the global optimum by rotating (or
translating) the a priori data to intersect the location of
the arm’s task inside its workspace.

3. On-line dynamic adaptive manipulation: Where the
convergence speed enables the integration of COIN in
sensor-based applications to correct the position of mobile
robots, and adapt their arms’ posture to offset the risk of
toppling during eccentric manipulation tasks.

4. Trajectory following: Where the convergence speed
allows a sequential calculation of joint postures that
enable the arm to follow a planar or spatial trajectory
in tandem with dynamic adaptive manipulation.

5. Generality: Where the speed of convergence of COIN
is shown to extrapolate to serial redundant arms with n-
joints.

In this paper, after a recast of preliminary motivations and
investigations reported in Moubarak and Ben-Tzvi (2011),25

a formulation of the optimality problem is presented along
with a mathematical proof of convexity. Simulation results
further validate the speed of convergence, and the ability
of the algorithm to deliver dynamic adaptive manipulation
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Fig. 1. (Colour online) A progression of sequences executed by a
mobile robot26–28 during object lifting, and corresponding instances
of incremental external load (on the arm).

by correcting the robot’s posture in a closed-loop control
scheme.

2. Early Investigations
The notion of a dynamically adaptive robot posture generated
in response to changes in the magnitude of an external load
was presented in Moubarak and Ben-Tzvi (2011)25 for a class
of robots shown in Fig. 1.25–28 A force sensor embedded
in the fingers of the end-effector enables the robot to
measure a discrete progression of incremental external load
during manipulation tasks. This gravity-driven progression
is reflected in Fig. 1, where a sequence of manipulation
maneuvers is matched with the corresponding change in the
external load that the arm experiences during the process.

Starting from a zero-load condition at the onset of the
maneuver corresponding to the object being completely on
the ground (Fig. 1(a)), the load increases gradually as the
contact surface between the object and the ground decreases
(Fig. 1(b) and (c)) until load saturation is reached when the
object is fully carried by the arm (Fig. 1(d)). In this particular
scenario, the kinematic redundancy of the manipulator is
of order 1. This allows the resolution of redundancy as an
exhaustive accelerated search based on the minimization of
the tilting moment that the three-link arm creates around the
base pivot (the end-effector denotes the third link).25

This search algorithm was further extrapolated for adaptive
manipulation in the presence of a tip load. Based on the dis-
cretization of external load measurements, the position of the
mobile base is adapted relative to the object to minimize the
effect of the tilting moment. In such case the minimization is
achieved for the combined moment induced by both tip load
and arm’s eccentric weight. This generates an adaptive move-
ment of the base that entails a corresponding reconfiguration
of the arm as reported in Moubarak and Ben-Tzvi (2011).25

3. Redundancy Resolution for n-Joints: Problem
Formulation
A broader extension of the early investigations can be
accomplished for a manipulator arm with n-links, mounted
atop a mobile robot such as in the schematic shown in Fig. 2.
The general expression for the arm’s tilting moment η(q)
generated around the base pivot can be written in a recursive
vector format as

0η(q) =
n∑

i=1

([
0d̃Gi(q)0Ri−1(q) 0Ri−1(q)

]
3×6

×
[ i−1giMi ∈ R

3×1

i−1ηext
i ∈ R

3×1

])
, (1)

where 0d̃Gi ∈ R
3×3 denotes the skew-symmetric matrix of

vector 0dGi . On the other hand, the general form of the arm’s
forward kinematics can be written in a matrix format as

[
d P ∈ R

3×1

1

]
=

{
n∏

i=1

i−1Ti

} [
0 ∈ R

3×1

1

]
, (2)

where the end-effector’s orientation in the plane of the arm is
defined by qn. This enables the formulation of an optimal
inverse kinematics problem as an explicitly constrained
minimization problem defined as

Min
q

0η(q)

subject to 0h(q) =
[

dP

1

]
−

{
n∏

i=1

i−1Ti

}

×
[

0 ∈ R
3×1

1

]
= 0, (3)

which can be reiterated as the objective of placing the end-
effector at a desired location dP = [Px Py Pz ]T with an
arm’s posture that minimizes the effect of the tilting moment.

The solution of Eq. (3) can be derived using a numerical
search under pre-defined convergence criteria. From a
mathematical perspective, the convergence rate of local and
global optimization methods depends on the initial guess
and its location relative to the minima in the search space.
While local convergence could often be guaranteed within
a reasonable number of iterations, global convergence may
or may not occur, and may even be prohibitively slow if
the initialization is made randomly.29 In the following we
propose to resolve the redundancy in Eq. (3) by introducing
the COIN algorithm that initializes the solution in the convex
space of the global optimum.

4. COIN Algorithm
In order to present a clear discussion on the proposed
COIN algorithm, the method will be first stated, derived,
and proven for a two-dimensional (2D) workspace, and later
extrapolated to a 3D space. Readers are encouraged to refer



4 Dynamic adaptive manipulation of mobile robots with redundant arms

Fig. 2. (Colour online) Kinematic diagram of a mobile robot with a serial redundant arm.

Fig. 3. (Colour online) Schematic showing a redundant arm in an
exhaustively generated optimal global configuration at δ◦ (β = 0◦)
(blue dashed lines), and in a configuration obtained by rotation of
the optimal posture by β = tan−1(Py/Px) − δ (black solid lines) (R
in Fig. 3 depicts R2D).

to the simulation video provided in Moubarak and Ben-
Tzvi (2012)32 for an initial insight into the operation of
COIN.

4.1. Definitions
With reference to Fig. 3, a definition of the three main
components of COIN algorithm are presented as follows:

(a) Training direction ξ : By definition, this is a single
direction chosen in the workspace of the arm along
which an exhaustive offline solution of Eq. (3) is
performed to generate the training data for COIN. Such
direction is at an angle δ with the x-axis (0◦ ≤ δ ≤ 90◦).

(b) Training data: Also referred to as a priori data, it is
the data resulting from the training process, which is
curve-fitted and later extrapolated by COIN to generate
an educated initial guess for the solution of Eq. (3) for
any other task in the arm’s workspace.

(c) Radius of COIN: It is defined as R relative to the base
frame 0, and depicts the radius of the circle along which a
planar task dP = [Px Py 0 ]T is located, or the radius of
the sphere along which a spatial task dP = [Px Py Pz ]T

is located. We define R2D =
√

P 2
x + P 2

y for a 2D task,

and R3D =
√

P 2
x + P 2

y + P 2
z for a 3D task.

4.2. Hypothesis
The physics that governs the steady-state global solution of
Eq. (3) for a redundant arm in one particular configuration
remains the same for any other configuration all across the
workspace.

As such, consider a steady-state global solution of Eq. (3)
given for an end-effector position located along one specific
direction ξ known as the training direction in the plane of the
arm, and defined by initP = [R

�= R2D 0 0 ]T (blue dashed
lines in Fig. 3) in a right-handed ξφψ Cartesian system.

The notion of COIN states that the numeric cyclic solution
for all other end-effector positions defined by vector dP =
[Px Py Pz

�= 0 ]T in the Cartesian xyz-space, and located on
a circle of radius R2D in the equivalent polar space, can
be initialized with the joint posture corresponding to the
global configuration at initP , extrapolated by an angle β =
tan−1(Py/Px) − δ relative to the ξψ-plane (black solid lines
in Fig. 3, where δ(deg) is the pitch angle between the x-axis
and the ξ -axis). This extrapolation rotates the training posture
from the initial configuration at initP to the desired position at
dP . We hypothesize that this transformation places the arm
in a posture that is at the global optimal posture, or close to
its convex space for the given desired task.
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4.3. Proof: Global initialization
In the absence of transients generated by external forces and
inertial dynamics (external forces and dynamics will be re-
integrated in the algorithm during adaptive manipulation), the
steady-state tilting moment 0ηs can be written recursively in
the plane of the arm as

0ηs(q) =
n∑

i=1

MilGi cos(qi) +
n−1∑
i=1

(
n∑

k=i+1

Mk

)
li cos(qi).

(4)
Equation (4) can be further simplified into a factored-out
summation expression in the form of

0ηs(q) =
n−1∑
i=1

{
MilGi +

(
n∑

k=i+1

Mk

)
li

}
cos(qi)

+ MnlGn cos(qn), (5)

where we further define the parameters

Ai = MilGi +
(

n∑
k=i+1

Mk

)
li ,

An = MnlGn,

and rewrite

ηs
i = Ai cos(qi) ηs

n = An cos(qn)

to simplify Eq. (5) to the following compact expression

0ηs(q) =
n−1∑
i=1

ηs
i + ηs

n. (6)

Using Eq. (6) and the equality constraints defined in Eq.
(2), the numerical solution of the optimization problem in
Eq. (3) can be derived by minimizing the corresponding
Lagrangian L(q, λ), where the constraints are appended to
the cost function using Lagrange multipliers λ,

L,β(q, λ) = 0ηs
,β(q) − λT 0h,β(q). (7)

In Eq. (7), L,β , h,β , and ηs
,β represent, respectively, the

Lagrangian, the constraints, and the tilting moment generated
by the arm for a task defined by angle β relative to the training
direction (see Fig. 3).

The primary objective of the proof is to evaluate the
first derivative of L,β and examine its non-violation after
a rotation of the initial global posture at δ (δ = 0◦ if ξ ≡
x-axis). The second objective is to investigate the positive

definiteness of the Hessian matrix, Hβ
�= ∇2L,β , and the

global convexity of the search space encompassed by the
vicinity of the rotated posture.

To examine the first derivative test, we first rewrite the cost
function in Eq. (6) as 0ηs

,β(q) = ∑n−1
i=1 ηs

i,β + ηs
n,β to reflect

the influence of angle β. In particular, for β = 0◦,which
corresponds to an end-effector’s position located along the
training direction ξ , the corresponding joint posture is – by

definition – the global minimum of the Lagrangian problem
in Eq. (7). Thus, one can write the global solution at δ as

ηs
,0

∗(q) =
n−1∑
i=1

ηs
i,0

∗ + ηs
n,0

∗, (8)

where (
∗
) symbol is added to reflect the globality of the

posture at δ. The objective is to further express 0ηs
,β for any

angle β in the workspace as a function of global optimal
expression of Eq. (8) and its individual terms.

Since we hypothesized that the global arm configuration
for a given β = tan−1(Py/Px) − δ can be obtained by a
rotation of the global posture corresponding to the end-
effector’s location at the intersection of the initialization
circle of radius R2Dwith ξ -direction, we can expand the cost
function for any qi = β + q∗

i into

0ηs
,β(q) =

{
n−1∑
i=1

Ai cos(q∗
i )+An cos(q∗

n )

}
cos(β)

−
{

n−1∑
i=1

Ai sin(q∗
i ) + An sin(q∗

n )

}
sin(β). (9)

In Eq. (9), the first bracketed term can be replaced by ηs
,0

∗(q).
In the second bracketed term, the sine terms can be replaced
by the following equivalent expressions,

Ai sin(q∗
i ) =

√
A2

i − (
ηs

i,0
∗)2

,

An sin(q∗
n ) =

√
A2

n − (
ηs

n,0
∗)2

, (10)

which yield an expression for 0ηs
,β(q) in terms of the global

cost function at δ as

0ηs
,β(q) = ηs

,0
∗ cos(β)

−
{

n−1∑
i=1

√
A2

i − (
ηs

i,0
∗)2 +

√
A2

n − (
ηs

n,0
∗)2

}
sin(β). (11)

In an identical scheme, the constraints h,β(q) =
[h1,β h2,β ]T derived from the inverse kinematics of the end-
effector in the plane of the arm can be written in terms of β

and the global posture angles q∗
i as follows:

h1,β = R2D cos(β + δ) −
n∑

i=1

li cos(q∗
i + β)

h2,β = R2D sin(β + δ) −
n∑

i=1

li sin(q∗
i + β) (12)

Furthermore, Eq. (12) can be simplified by expanding the
sine and cosine terms, which allows us to rewrite Eq. (12) as
a function of angle β and the global equality constraints at δ
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(β = 0◦) denoted by

h∗
1,0 = R2D cos(δ) −

n∑
i=1

li cos(q∗
i ) = 0,

(13)

h∗
2,0 = R2D sin(δ) −

n∑
i=1

li sin(q∗
i ) = 0.

The subsequent substitutions yield the general expression
for Eq. (12) in terms of h∗

1,0, h∗
2,0, and angle β as follows:

h1,β = h∗
1,0 cos(β) − h∗

2,0 sin(β),
(14)

h2,β = h∗
1,0 sin(β) + h∗

2,0 cos(β).

Using Eqs. (11) and (14), it is now possible to express
L,β(q, λ) in Eq. (7) in terms of the global cost function and
the equality constraints at δ as

L,β = (
ηs

,0
∗ − λ1h

∗
1,0 − λ2h

∗
2,0

)
cos(β)

−
{

n−1∑
i=1

√
A2

i − (
ηs

i,0
∗)2 +

√
A2

n − (
ηs

n,0
∗)2

− λ1h
∗
2,0 + λ2h

∗
1,0

}
sin(β). (15)

However, since it can be proved under not very restrictive
conditions that the Lagrange multipliers λT change
continuously with small variations in the constraints and cost
function,30 it is valid to assume that vector λT for the rotated
posture is close to that for β = 0◦. As a result, one can set

λ1
�= λ∗

1 and λ2
�= λ∗

2, i.e., the λT values corresponding to the
global posture along the training direction ξ . This property is
subsequently highlighted in the training data in Fig. 5, where
vectors λ∗

1 and λ∗
2 do not vary significantly for different end-

effector tasks. This simplifies the gradient of L,β in Eq. (15)
to

∇L,β = −∇
{

n−1∑
i=1

√
A2

i − (
ηs

i,0
∗)2 +

√
A2

n − (
ηs

n,0
∗)2

− λ1h
∗
2,0 + λ2h

∗
1,0

}
sin(β), (16)

where we set ∇(ηs ∗
,0 − λ1h

∗
1,0 − λ2h

∗
2,0) = 0 because of

optimality at δ◦ (β = 0◦). The remaining expression of ∇L,β

in Eq. (16) is not necessarily equal to zero. This leads to the
conclusion that the rotated global configuration at δ◦ does not
generate the global optimal posture at the new task defined
by β = tan−1(Py/Px) − δ.

However, the convexity of the global posture at δ◦
remains unchanged under a rotation of angle β. This
means that the extrapolated Hessian matrix of the original
global configuration, denoted by H (β + q∗), remains strictly
positive definite ∀β. In fact, the expansion of sine and cosine
terms in the matrix H (β + q∗) can be rearranged in a compact

Fig. 4. (Colour online) Visualization of the training process for a
planar arm with three joints, where Link 3 denotes the end-effector
(training direction ξ ≡ x-axis).

form in terms of the Hessian matrix of global posture at δ as

H (β + q∗) = H ∗
0 cos(β) − HS sin (β) > 0, (17)

where H ∗
0 represents the Hessian matrix at δ, which is

positive definite because of globality. In Eq. (17) we note that
matrix HS is analogous to the gradient of Eq. (16), where by
definition

−HS
�= Hβ = ∇

{ ∇L,β

sin(β)

}
(18)

with ∇L,β as defined in Eq. (16). For −δ◦ ≤ β ≤ 90◦ − δ◦,
which delimits the domain of the arm’s workspace where the
risk of toppling is the greatest (the front domain bounded
by the x–y coordinate axes in Fig. 3), inequality (17) is
satisfied ∀ β, q∗only if matrix HS is strictly negative definite.
This leads to the conclusion that matrix Hβ in Eq. (18) is
strictly positive definite, and remains so for small variations
in parameters q∗ and β.

This allows us to conclude that the domain encompassed
by the arm’s postures around the rotated initial configuration
represents a convex search space. Therefore, if a minimizer
of Eq. (7) is found in this space via a gradient descent starting
from the rotated posture as initial guess, such minimizer will
be the global minimum, which corresponds to the global arm
posture for the desired end-effector position defined by dP .

We postulate that this conclusion is valid for an n- assembly
of revolute and prismatic joints.

5. Simulations and Convergence Speed

5.1. Inverse kinematics: three-joint revolute arm
The first simulation of COIN refers to the manipulator arm
of the robot shown in Fig. 1. A training direction ξ is
chosen along the x-axis of the workspace, and is discretized
into a sequence of consecutive end-effector positions. For
each position, an offline global solution of the augmented
minimization problem in Eq. (7) is generated exhaustively as
visualized in Fig. 4.

This sequential global solution of Eq. (7) generates
a history of joint angles and Lagrange multipliers λ as
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Fig. 5. (Colour online) Joint angles, Lagrange multipliers history, and corresponding best polynomial fit resulting from the training process
of the three-joint arm in Fig. 4.

the end-effector covers the reachable span of the training
direction. This history, plotted in Fig. 5, is curve-fitted
with a polynomial of order m in the generalized spatial
coordinate ξ

ρj (ξ ) =
m∑

i=0

μj (i+1)ξ
m−i , (19)

where ξ ≡ x in the case of Fig. 4. In Eq. (19), μj (i+1) ∈
R

(n+p) × (m+1) is the matrix of polynomial coefficients, where
p denotes the length of vector h(q), with 1 ≤ j ≤ n + p (n
is the number of joints, and m is the order of polynomials ρj ).
ρ = [q λ ]T ∈ R

(n+p)×1 represents the augmented vector of
joint angles, with n = 3 and p = 2 for the three-joint arm of
Fig. 4.

Once the training data ρj (ξ ) is generated, the solution of
Eq. (7) is performed in the polar space. This means that for
the arm shown in Fig. 4, any end-effector position defined by
vector dP = [Px Py 0 ]T is located on an initialization circle
of radius R2D. The intersection of this circle with the training
direction ξ (the x-axis in this case) generates the global
training configuration ρ train = ρ(ξ = R2D). The rotation of
this training posture by an angle β = tan−1(Py/Px) − δ

(δ = 0◦ for the arm of Fig. 4) delivers the initial guess for
the global solution of Eq. (7) that lies in the convex space of
the desired position dP . The visualization of this process is
shown in two sample simulations depicted in Figs. 6 and 7.

In Fig. 6, a sequence of end-effector positions is defined
on the same initialization circle of radius R2D = 0.8 m. The
intersection of this circle with the training direction (x-
axis) generates the global training posture ρ train(0.8) (blue
dashed lines). The rotation of this posture by an angle
β = tan−1(Py/Px) corresponding to every sequential task,
furnishes the initial guess (black dashed lines) in the global
search space. This enables the numeric solution of Eq. (7) to
converge to the global optimum (red solid lines) within three
to four iterations.

A more general simulation of COIN is shown in Fig. 7
for a series of end-effector positions located on different
circles of initialization. The circle on which every task is
situated intersects the training direction (x-axis) at a point
that generates a corresponding training posture from Eq. (19)

Fig. 6. (Colour online) Initial posture (blue dashed lines), rotated
posture (black dashed lines), and optimal posture (red solid lines)
for a sequence of end-effector positions located on the same
initialization circle of radius R2D = 0.8 m.

(blue dashed lines). The rotation of this posture by an angle β

creates the initial guess (black dashed lines) that enables the
convergence of the global optimal solution in Eq. (7) within
three to four iterations.

5.2. Inverse kinematics: 10-joint revolute arm
The concept of COIN can be further extrapolated to a robotic
manipulator with n-joints such as the 10-joint arm illustrated
in Figs. 8(a) and (b).

Figure 8(a) shows a simulation of close-proximity end-
effector tasks located on the same initialization circle of
radius R2D = 0.5 m, while Fig. 8(b) shows a simulation of
distant tasks located on a circle of radius R2D = 2.4 m. In
both cases, the global solution of Eq. (7) for every task dP is
initialized with the posture corresponding to the intersection
of the initialization circle with the training direction, rotated
by β = tan−1(Py/Px) − δ. For the 10-joint arm, the training
axis was arbitrarily chosen at δ = +45◦.
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Fig. 7. (Colour online) Initial posture (blue dashed lines), rotated
posture (black dashed lines), and optimal posture (red solid lines)
for a sequence of end-effector positions located on different
initialization circles.

The convergence of the solution to the global arm posture
is accomplished in all cases within four to seven iterations.
This performance expands to any other task, where the
fast convergence rate applies to the entire family of circles
covering the whole workspace of the end-effector.

5.3. Redundancy resolution: comparison of convergence
speed
To highlight the global convergence speed of COIN,
a comparison with existing global search routines is
established, where the optimization problem stated in Eq.
(3) is solved using the MultiStart algorithm.31

Although this comparative analysis should also account
for existing redundancy resolution routines such as the
Damped Least Squares17 and Extended Jacobian,18,19 the
local convergence of these methods makes such comparison
mathematically irrelevant. This is further inhibited by
the variable convergence rate of these algorithms, where
the convergence speed depends directly on the location of the
initial guess inside the search space, which is often selected
randomly.

As such, the time required prior to convergence for the
COIN and the MultiStart algorithms is plotted in Fig. 9 as
a function of angle β (−δ ≤ β ≤ 90 − δ) for the sample
case study simulations shown in Figs. 6 and 8 (processor
employed: Dual-Core 2.93 GHZ, 3.25 GB RAM). For
the three-joint problem, the average time required by the
MultiStart algorithm to converge to the global solution was
1.87 s, compared with 27 ms for the COIN algorithm.

For the 10-joint case study, the MultiStart algorithm
converges to the global solution in an average time of 1.324 s
for the close-proximity simulation (Fig. 8(a)), and 2.154 s for
distant tasks (Fig. 8(b)). In comparison, COIN converges to
the same globally optimal posture in an average time of 19 ms
for both simulations. This means that COIN reduces the on-
line computational time by an average of 98–99%, which
makes it ideally fast for adaptive manipulation applications
as will be discussed in Section 6. We note that the termination
criteria for the gradient descent subroutine of COIN was set
to ‖∇L,β‖ < 0.001 in all simulations, where L,β is as defined
in Eq. (7), and ‖·‖ denotes the Euclidean norm.

5.4. Trajectory tracking: extrapolation to 3D space
The previous simulations focused on planar workspaces,
where the objective was to visualize the operation of COIN
and compare its convergence speed to existing global search
routines.

In this section we extrapolate the concept of COIN to
include spatial trajectories. In a 3D space, the desired
end-effector position defined by dP = [Px Py Pz 
= 0 ]T is
located on a sphere of radius R3D instead of a circle of radius
R2D. The ball B resulting from the union of all spheres that

Fig. 8. (Colour online) Rotated posture (black dashed lines) and optimal posture (solid red lines) for a 10-joint arm for a sequence of
end-effector tasks. (a) Close-proximity tasks located on an initialization circle of radius R2D = 0.5 m. (b) Distant positions located on the
circle of radius R2D = 2.4 m.
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Fig. 9. (Colour online) Comparison of computational time prior to convergence between COIN and the MultiStart31 algorithms for
redundancy resolution of the arms in Figs. 6, 8 (a), and (b).

cover the spherical-equivalent of the Cartesian workspace
is further segregated into an infinite family of circles Cpq ,
where B = ⋃∞

p=1 (
⋃∞

q=1 Cpq). Each sphere Sp = ⋃∞
q=1 Cpq

is defined by the global training posture ρ train
p = ρ(ξ = R3D)

generated via direct substitution in Eq. (19), and resulting
from the intersection of Sp of radius R3Dwith the training
direction ξ .

The training posture ρ train
p is then yawed by γ =

tan−1(Pz/Px) about the y-axis (Fig. 10) to intersect the
individual circle Cpq (longitudinal line) on which dP is
located. At this intersection, ρ train

p is further pitched by

β = tan−1(Py/
√

P 2
x + P 2

z ) − δ about the z-axis to intersect
the latitude line of dP . These two transformations generate
the initial guess for COIN, which calculates the global posture
from Eq. (7) at dP .

A simulation of this process is depicted in Fig. 10, and
further visualized in the video file in Moubarak and Ben-Tzvi
(2012),32 where an 11-joint spatial arm is shown tracking a
3D knot trajectory via COIN. The initial guess is shown in
black lines, which is generated from the intersection of the
training direction ξ with the corresponding sphere of radius
R3D, followed by a yaw and pitch transformations. These
transformations place the end-effector of the training posture
at dP , and enable COIN to calculate the global solution of
Eq. (7) (red solid lines) to track a spatial trajectory at a
convergence rate (19 ms) similar to the one shown in Fig. 9
for planar trajectories.

6. Adaptive Manipulation
The primary objective of COIN is to maintain the dynamic
balance of a mobile robot during eccentric manipulation
tasks. The choice of the cost function in Eq. (1) fulfills

this objective as a secondary task while resolving the arm’s
redundancy to meet forward kinematic constraints.

In the previous sections, the formulation of this problem
and the speed of convergence of COIN were presented for
planar and spatial applications in the absence of inertial
forces and external load disturbances. This is because the
objective of the solution was to resolve redundancy to meet
the forward kinematic constraints at dP while minimizing
the tilting moment generated by the steady-state posture of
the extended arm.

In sensor-based applications, however, external loads
(object weight, inertia, etc.) play an important role in defining
the dynamic posture of the arm, and the autonomous position
of the mobile platform relative to the end-effector’s trajectory
to prevent tip-over instability. Indeed, the inertial dynamics
of the arm and the external tip load create transient moments
that disturb the steady-state gravity-based stable posture of
the arm at dP , causing the mobile robot to lose balance
despite the globally optimal steady-state posture.

The formulation of the optimal problem in Eq. (3) and
the ensuing COIN algorithm enable the compensation for
these transients in a closed-loop scheme. This is achieved
by initiating real-time swift control commands that adapt the
position of the robot relative to the end-effector’s trajectory
in order to offset the impact of disturbance. This autonomous
repositioning is accompanied by a recalculation of the global
arm posture that maintains contact with either the object,
or the desired trajectory of the end-effector during a given
manipulation task.

This scheme is shown in Fig. 11, where the input-desired
end-effector position dP is supplemented by force and joint
angle measurements to generate two bundles of control
signals. One bundle consists of joint commands, while
the other consists of mobility commands that adaptively
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Fig. 10. (Colour online) Simulation of an articulated redundant arm (11 joints) tracking a 3D knot trajectory32 (black dashed postures
represent rotated training data).

Fig. 11. (Colour online) Schematic illustration showing the
integration of COIN in a closed-loop control scheme with force
and joint angle measurements.

reposition the mobile base relative to the end-effector’s
position. The initiation of these bundles is based on an
extrapolation of the global solution of Eq. (7) to account
for external moments, inertial dynamics, and inequality
constraints.

6.1. Dynamic stability constraints
During manipulation tasks, the measurement of external
loads, in particular the end-effector’s force and moment

components, are sampled at a rate k. This sampling converts
the change in the external tip load into a discrete progression
of instances k of external forces nFeff(k) and external
moments nηeff(k) in the end-effector’s frame n. With these
measurements fed back to COIN, the repositioning of the
mobile base and the recalculation of the optimal arm posture
are initiated anytime the stability constraint

M0
0lG0 × 0g + 0ηb(k) − 0δη > 0η(q)

∣∣
k

+ [
d P̃ (k)

(
0Rn

)
0Rn

]
3×6

[
nFeff(k) ∈ R

3×1

nηeff(k) ∈ R
3×1

]
(20)

is violated. In Eq. (20), 0ηb defines the external
moments acting on the base (such as friction), 0g and
0lG0 = [x0 y0 z0 ]T denote, respectively, the gravitational
acceleration and the position of the base’s center of mass,
both relative to the base frame 0, 0η ∈ R

3×1 is as defined
in Eq. (1), and 0Rn ∈ R

3×3 the rotation matrix mapping the
coordinates of frame n into frame 0. 0δη ∈ R

3×1 is further
added as a safety margin to the stabilizing moment.

Anytime condition (20) is violated, a new displacement
vector �(k) is calculated according to

�(k) = [0F̃eff(k)
]−1

3×3

[
0η(q)

∣∣
k
+ 0δη + 0ηeff(k)

− 0ηb(k) − M0
0lG0 × 0g

]
3×1 (21)

and the robot is moved by a distance �(k) = �(k − 1) −
�(k) until a stable position is reached from which full-load
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manipulation can be achieved with no risk of toppling. In
Eq. (21), we note that 0F̃eff(k) refers to the skew-symmetric
matrix of 0Feff(k).

However, as this adaptive mobility is initiated at
increments �(k), the acceleration of the robot generates
inertial forces and moments that are induced onto the arm.
These inertial loads are seen by COIN as additional transient
external moments, which contribute to the destabilization of
the steady-state posture of the arm at dP . Such transients are
implicitly included in vector 0η(q) in Eqs. (1), (6), and (21),
whose components can be expanded for link i as

0ηi(q) = 0ηlin
i (q) + 0η

ang
i (q) + 0η

per
i (q) (22)

with the moment generated by the linear acceleration
component defined as

0ηlin
i (q) = Mi

{
0dGi

× (
0aGi

+ ab

)}
, (23)

where the acceleration of the center of mass of link i relative
to frame 0 can be written as

0aGi
= 0d̈Ci−1 +0Ri−1

{
i−1q̈i × i−1rGi

+ i−1q̇i

× (
i−1q̇ × i−1rGi

) + 2i−1q̇i × i−1vGi
+ i−1aGi

}
. (24)

In Eq. (24), i−1vGi
and i−1aGi

, respectively, define the
velocity and acceleration of Gi relative to frame i − 1 (when
they exist, for a prismatic joint). Furthermore, the moment
generated by the angular acceleration component can be
written as

0η
ang
i (q) = 0Ri−1

(
i−1IGi

× i−1q̈i

)
for a revolute joint,

0η
ang
i (q) = 0 for a prismatic joint. (25)

In Eq. (22), the remaining component 0η
per
i (q) denotes

the vector of any additional peripheral measurable external
moment (if applicable). Note that 0η

per
n (q) = 0 for i = n in

Eq. (22) since the external forces and moments acting on the
end-effector are explicitly isolated in Eqs. (20) and (21).

The linear and angular acceleration components of the
arm’s links are either measured with dedicated sensors, or
calculated via discrete finite difference of joint displacements
measured using encoders (with appropriate filtering). In such
case, since the adaptive dynamic manipulation is initiated
reactively with COIN, the discretization of the velocity and
acceleration of link iat instance k is written as

q̇i(k) = qi(k) − qi(k − 1)

T
,

(26)

q̈i(k) = qi(k) − 2qi(k − 1) + qi(k − 2)

T 2
,

where T defines the sampling period. On the other hand, the
linear acceleration components of the mobile base (ab) can be
measured in real-time via an on-board inertial measurement
unit.

6.2. Simulation of adaptive manipulation

In Eq. (21), vector �(k) = [xd (k) yd (k) zd(k) ]T defines the
3D displacement that the robot should accomplish in order
to offset the risk of toppling induced by a tilting moment
vector with spatial components. In practical applications,
however, mobile robots typically provide unidirectional
mobility with Hilare-type or car-like steering. This means
that the compensation for the effects of the tilting moment
can only be accomplished for the moment’s component
whose axis is orthogonal to the direction of displacement.
For mobile robots with no omni-directional mobility, this
component is laterally orthogonal to the direction of motion
(i.e., about the z-axis, see Figs. 2 and 3).

Compensation for this moment component is accom-
plished autonomously via forward mobility during object
manipulation tasks, as well as during trajectory following
in the presence of tip load, such as object placement. A
case-study simulation of dynamic adaptive manipulation via
COIN is shown in Fig. 12. For simplicity of visualization,
we consider the case of eccentric object lifting where the
robot lifts a stationary load from an inadequate posture.
However, such adaptive manipulation control can be equally
extrapolated to other applications, such as object placement
along a trajectory.

The first simulated task depicts the mobile robot shown
earlier in Fig. 1 (three-joint arm), and consists of lifting a
20 kg payload, while the second task consists of lifting a
10 kg payload with a serial arm of four joints. Both tasks are
accomplished in 3 s starting from an inadequate posture of
the arm.

During this adaptive manipulation process, the stability
condition is evaluated at every instance k of external load
measurement. Anytime inequality (20) is violated, a new
vector �(k) is calculated. A control signal is then initiated
to move the robot forward by �(k) = �(k − 1) − �(k)
along with its training data, and a new global arm posture
is generated by relocating dP on a new corresponding
initialization circle. If condition (20) is not violated, the robot
remains idle while the arm continues the execution of the
object-lifting task until the next measurement is acquired
and evaluated. This process is shown in Fig. 12, which
depicts the forward mobility of the robot as a function of
time.

The flat phases of the robot’s displacement in Fig. 12 (right
column) visualize the stationary intervals of the forward
mobility process, while the ascending slope shows the
adaptive repositioning of the mobile base relative to the
exponentially increasing external load. Such combination
of stationary and dynamic mobility phases continues until
the robot approaches a stable posture from which full-load
manipulation can be executed with no risk of toppling.

This autonomous mobility is further accompanied by an
adaptive reconfiguration of the arm’s posture in order to
maintain contact with the object. The fast global convergence
of COIN enables such adaptation at an average computational
time of <20 ms for every joint reconfiguration. This allows
the robot to react swiftly to the risk of toppling in order
to maintain its balance throughout the progression of an
eccentric manipulation task.



12 Dynamic adaptive manipulation of mobile robots with redundant arms

Fig. 12. (Colour online) Simulation of dynamic adaptive manipulation and corresponding forward mobility via COIN for (a) three-joint
arm in close-proximity, (b) three-joint arm for a distant task, and (c) four-joint arm (red lines are training data translated with the robot).

7. Conclusion
This paper presented a new algorithm called COIN, which
is characterized by a fast global convergence rate, and can
be employed for redundancy resolution, spatial trajectory
following, and tip-over stability of mobile robots via
dynamic adaptive manipulation in real-time. Simulation
results further demonstrated the fast convergence attributes
and broader applicability of the proposed algorithm to serial
redundant arms with n-joints. These adaptive properties of
COIN set the basis for our future investigations, where
we will further study the impact of the chosen training
direction on the convergence and speed of the algorithm,
and explore the applicability of the established methods to
the adaptive manipulation of modular robots, such as Self-
configurable and Transformable Omni-directional Robotic
Modules (STORM).33
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