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a b s t r a c t 

This paper presents a wireless instrumentation system developed for real-time estimation of air turbu- 

lence patterns arising from the interaction of wind with any structure under consideration, which is an 

important study in the aerospace industry. In particular, this paper focuses on the application of the pro- 

posed system in a naval research problem for off-board measurement of ship air wake patterns using an 

instrumented radio controlled (RC) helicopter. We propose the use of an Inertial Measurement Unit (IMU) 

as a sensor to measure air wake in the form of induced vibrations on the helicopter while it maneuvers 

through regions of active air wake. The proposed system makes use of Back Propagation Neural Networks 

to compensate for the vibrational noise contributed by pilot inputs. The instrumentation system was in- 

tegrated and tested on a modified training vessel in the Chesapeake Bay, which provided a wide range of 

wind conditions. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The aerospace industry has always expressed a need for new

technological advancements and techniques capable of redefining

design and operational processes, which facilitate the progress of

exploration and science. Considerable research has been devoted

to monitoring structural vibrations [1] . Yet, determining air turbu-

lences (often the main cause of structural vibrations and risk to

aerial vehicles) is a challenging task which researchers continually

explore and try to understand. 

The most commonly used device for measuring air turbulence

is the Hot Wire Anemometer (HWA) which relates the resistance

of a wire, held at a constant temperature, to the speed of air-

flow at a single point in space. Researchers have used HWA for

testing wind tunnel streams, model testing, and investigating tur-

bulence problems in boundary layers, wakes of jets and channels

[2] . Sonic Anemometers offer additional capabilities of both air-

flow speed and direction using ultra sonic sound waves; measure-

ments are taken with fine temporal resolution making them very

well suited for turbulence measurements [3] . These delicate sen-

sors are expensive, require constant recalibration, and sturdy plat-

forms during data collection since motions of the probe result in

additional air flow velocity measurements. In order to obtain in-
∗ Corresponding author. Tel.: + 15402316938. 
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ormation about air turbulence in a wide area, a large number of

hese sensors should be mounted on sturdy rigging. In some cases

iggings cannot be installed to cover an entire area of interest. For

xample, measuring off deck ship air wake activity for developing

afe launch and recovery envelops of aerial vehicles [4] . Alterna-

ively, a single sensor can be placed on a beam and swept about

he entire area. This method suffers from deflections of long beams

ue to pitch/roll motion of the ship and causes random fluctua-

ions in wind measurements and produces false information about

he air turbulence. 

Computational Fluid Dynamics is a popular method of generat-

ng extrapolated velocity fields offering valuable insight to turbu-

ent vortices. The computer-aided designs of the model and envi-

onment are often simplified to reduce computation loads making

omputational methods insufficiently validated for systems with

omplex structures. In addition, these simulations often need ex-

erimental validation using anemometer sensors, which have their

espective drawbacks [5–9] . 

There is a need to develop a new technique that accurately

etects turbulence patterns in large, open spaces. A new means

f turbulence data collection in the Aerospace Industry will bring

bout enhanced flight research capabilities, and improvements in

oth aerial vehicle design and operational safety analysis. Our

roposed system named Wireless Telemetry System (WTS) uti-

izes an RC helicopter flying in an area of interest with active

urbulence regions to estimate and detect turbulence patterns in

http://dx.doi.org/10.1016/j.mechatronics.2016.03.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mechatronics
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechatronics.2016.03.010&domain=pdf
mailto:bentzvi@vt.edu
http://dx.doi.org/10.1016/j.mechatronics.2016.03.010
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Fig. 1. Interaction of air wake with helicopter resulting in tilting. 
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eal-time. Normally machine learning techniques are used as opti-

um controller in robotic systems [10–12] . The proposed system

tilizes trained neural networks that act as filters to eliminate pi-

ot induced vibrations from recorded vibrational data. Results are

apped out visually on a Graphical User Interface (GUI) to bet-

er understand turbulence patterns. Experimental results and vali-

ation of our instrumentation system is presented through a case

tudy performed to detect turbulence patterns and monitor heli-

opter interactions with ship air wakes created by air flowing over

he ship superstructure. 

. Proposed System 

Air wake is turbulence originating from pressure gradients that

esult in wind gusts. The motivation of the WTS comes from ob-

erving an RC helicopter flying through active air wake zones. Dur-

ng flight, it experiences differential airflow velocities that cause

ilting of the aircraft since its center of mass and effective geomet-

ic center do not coincide. We can infer that monitoring angular

elocity patterns of a helicopter will provide a good description of

ir wake patterns. Thus, our proposed system detects air wake pat-

erns in wide open areas by monitoring the RC helicopter angular

ates using a Gyroscope. Fig. 1 shows tilting of an RC helicopter

ith angular velocity ω as a result of differential wind velocity

V1 > V2). 

It is important to note that the presence of air wake is not

he only cause of angular velocity changes of the helicopter during

ight. Cyclic pilot inputs change the pitch angles of the rotor blade

hich result in differential thrust and consequently force moment

pplied on the helicopter fuselage. Thus, if this angular accelera-

ion due to pilot inputs is known and the data sampling rate re-

ains constant, the angular rate due to pilot input at any point

n time can be estimated from the previous angular rate measure-

ent. In general, helicopter is as a non-linear multiple inputs and

ultiple output (MIMO) system and can be modelled as follows: 

 (t) = f (x (t − 1) , u (t − 1)) (1)

here x ( t ) represents the system state variables, such as angular

nd linear positions/velocities at any time t , and u represent ex-

ernal inputs to the system. These external inputs constitute both

ilot inputs and ship air wake disturbances. Angular rates of the

C helicopters measured at any time from the Gyroscope mainly

epend on parameters related to the previous state variables

13,14] (i.e., linear velocities, angular rates, rotor speed and alti-

ude, etc.) and external inputs as shown in ( 1 ). During air wake

easurements, if flight parameters such as rotor speed, altitude

nd linear velocities are not drastically changed, then it is safe

o assume that the angular rates mainly depend on pilot inputs,

hip air wake and the previous measurements of angular rates.

he major components of tilting and oscillations are caused by pi-

ot input responses. The proposed system utilizes machine-learning
echniques to estimate and compensate for dynamics arising from

ilot inputs in order to isolate air wake induced effects on the

ircraft. 

The WTS is composed of three components viz. transmitter

odule, receiver module and transmitter carrier (RC Helicopter).

oth the transmitter module and the receiver module are similar

ustom-made instrumentation boards mounted with sensors like

MU, GPS, Thermometer, and Barometer sensors. The transmitter

odule measures the dynamics of the helicopter and sends the

ata to the receiver module over Xbee TM long range RF transceiver.

he receiver module measures the dynamics of the boat and sends

he measured data along with the transmitter module’s data to a

omputer via a USB channel for real time processing. The RC he-

icopter was selected to carry the transmitter because of its low

ost, high maneuverability and hovering capabilities. 

The WTS was used to detect ship air wake turbulence in the

ft of a cruising US Naval Academy’s YP676 for estimation of safe

aunch and recovery envelopes. The data measured by the trans-

itting module on the helicopter was routed wirelessly to the

eceiver module connected to a laptop located on the ship and

isplayed on a GUI. During data collection, the YP craft master

aintained consistent speed and wind conditions based on the ref-

rence anemometer while the pilot swept the RC helicopter back

nd forth in the lee of the ship. An experienced pilot maneuvered

he RC helicopter (with the transmitting module) in a wave-like

attern at constant height in the aft of the boat. During helicopter

aneuvers, the pilot responded to wind gusts in order to keep the

elicopter stable. Such responses introduce tilting/vibrations in the

MU data and are highly subjective in nature. 

In order to accurately measure actual air wake interactions, pi-

ot induced dynamic inputs must be removed from the IMU data.

he RC helicopters require five dimensional pilot input in the form

f PWM signals. Three of which control swash plate kinematics

nd the remaining two control the tail rotor pitch and rotor speed.

ll five pilot input channels contribute to the helicopter’s attitude.

ince angular velocity measurements are a vector sum of external

isturbances and pilot induced dynamics, external air wake dis-

urbances can be obtained by subtracting predicted IMU readings

rom actual readings. Pilot input from the radio transmitter (Re-

ote Controller) controls the helicopter’s attitude and is sent in

one-to-all’ broadcasting mode. Thus, multiple RF receivers can re-

eive the same signal from a single transmitter. Therefore, an addi-

ional RC receiver was used in the receiver module to read the pilot

nputs sent by the transmitter. WTS uses Back Propagation Neural

etworks (BPNN) to find mapping of IMU readings with pilot in-

ut signals. The air wake intensity was estimated by subtracting

he BPNN generated IMU readings from the actual IMU readings in

eal-time. 

The real-time location of the helicopter was estimated in the

oat’s frame of reference using GPSs in the receiver and the trans-

itter modules and a real-time trajectory of the helicopter was ob-

ained. The helicopter trajectory, IMU vibrational components, and

ilot inputs are displayed and recorded in real time through GUI

oftware developed using NI Lab VIEW 

TM . By fusing sensor data,

ossible locations of sharp gradients in the air velocities can be

apped relative to the ship representing helicopter/air wake in-

eraction patterns (accurate within one rotor diameter of the heli-

opter). Fig. 2 shows the architecture of the WTS proposed to mea-

ure ship air wake patterns. 

. Hardware Details 

The WTS was used with three different off-the-shelf RC heli-

opters with rotor diameter of 1.3 m (4.5 ft.) to detect air wake

atterns generated by the YP676 vessel. The YP676 vessel was

quipped with an eight channel ultrasonic anemometer array for
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Fig. 2. Schematics of the wireless telemetry system. 
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maintaining a consistent wind condition during flight tests. Both

transmitter and receiver modules are battery powered, and include

independent sensor boards based on ATmega128 and ATmega8 mi-

crocontrollers. To ensure interchangeability, both sensor modules

were deliberately designed to be similar both in terms of hard-

ware and software. Each of the sensor modules contains GPS, 6

axes IMU, thermometer, 3D magnetometer, and barometer sensors.

The sensor boards are equipped with micro SD card data logger,

Quad USB to UART IC chip, micro USB interface, XBee RF module,

and Futaba TM 8 channel 2.4 GHz RC receiver interface. The task of

the transmitter module is to read all the sensors, send all the data

to the SD card over SPI bus and transmit the same data over XBee

wireless link. 

The receiver module connected to a computer via USB reads all

of the onboard sensors, records the data on SD card, and sends the

same to the computer via one of the four virtual serial COM ports.

The XBee link on the receiver module receives data from the trans-

mitter module and directly sends data to the computer over an-

other serial COM port. The microcontroller on the receiver module

reads pilot inputs in the form PWM signals and sends these signals

to a computer over a third serial COM port at an update rate of

45 Hz. Therefore, the receiver module, over three serial ports, pro-

vides sensor data from the transmitter module and receiver mod-

ule and pilot input data via USB link. 

Since both sensor modules are interchangeable, the mode of op-

eration of the module is selected by a jumper switch. Fig. 3 shows

the connections schematics of the sensor modules of the WTS. 

The transmitter module and the receiver module were both

rigidly fitted and oriented on the helicopter and the boat respec-

tively using custom made 3D printed mountings. Rigid mounts

were necessary in order to accurately capture angular velocity
 o
omponents of the helicopter while in flight due to the sensors

igh sensitivity. Fig. 4 shows the transmitter module fitted on the

elicopter and the receiver module fitted on the ship using 3D

rinted mountings. 

. Estimation of pilot induced vibrations 

Artificial Neural Network (ANN) is one of the most studied

15–18] computational models in the field of machine learning

nd pattern recognition. Neural networks are widely used with

ireless sensor networks [19–20] . Generally speaking, a neural

etwork is an inter-connected network composed of processing

nits (neurons) where each neuron is a multi-input and single

utput system. Each neuron calculates the weighted sum of all

nputs , subtracts a characteristic value (bias) from the sum, and

hen applies a characteristic function to obtain the output of the

euron. The capacity of a neural network to modal complex data

argely depends on the network topology and the characteristic

unction associated with each neuron. Thus, training of neural

etwork consists of finding the optimal set of weights and bi-

ses. ANNs are very popular among the scientific community

s a pattern recognition tool especially for nonlinear regression

roblems. In fact, there is a common perception that if the data

s preprocessed properly, a two layered neural network can model

ny complex practical data. Complex networks with large number

f neuron layers can even model fine variation in training data

ut increases the risk of overtraining and loss of generalization.

nfortunately, no analytical method exists to determine optimal

etwork topologies and one needs to rely on ‘trial and error’

ethods based on the nature of training data for determining the

ptimum topology of a neural network. 
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Fig. 3. Hardware schematics of sensor modules. 

Fig. 4. Hardware Setup: (a) Helicopter fitted with Data Package and Flotation system, (b) Data package with transmitter module inside, (c) Transmitter module (Top), 

(d) Transmitter module (Bottom), (e) Receiver module. 
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The proposed system uses Back Propagation Neural Networks

BPNN) for modelling the relationship between pilot inputs and

MU responses. BPNN is a multilayer feed-forward network and

ses error back propagation algorithm [17–18,21] for training. The

eural network was trained to predict the IMU (Gyroscope) vibra-

ional components resulting from pilot inputs obtained from the

eceiver module. A total of six indoor test flights were conducted

n an enclosed hanger (at Davison Air Field), free of external distur-

ances (air wake and naturally imposed wind) for the collection of

he data and training of the Neural Network. Three different RC he-

icopters (two flights with each helicopter) were used in these ex-

eriments and three separate sets of Neural Networks were trained

o model the dynamics. The three helicopters used in the experi-

ents were two TRex Pro 600E and one TRex ESP 600 and are

eferred to as ‘Heli 1 ′ , ‘Heli 2 ′ and ‘Heli 3 ′ , respectively through-

ut this paper. To obtain a versatile dataset of pilot inputs and he-

icopter responses, a variety of maneuvers (from extreme motion

o steady hovering) were performed with these helicopters. Dur-

ng these experiments, the helicopters were flown at a significant

eight from the floor to avoid the ‘ground effect’ and the impact

f rotor wakes on the helicopter dynamics. 

.1. Neural network schema and data pre processing 

RC helicopters, similar to every electro-mechanical system, re-

uire time to respond to pilot control inputs. Hence, rather than

nstantaneous input, there is a need to consider the pilot input
istory for predicting the IMU output at any instant in time. Due

o dimensionality issues, it is not possible to directly use the pi-

ot input history as input vector. To reduce the dimensionality of

he training data, pilot input history was approximated (within a

xed time window) to a linear function of time and line param-

ters were used to describe the pilot input history. For each pi-

ot input channel (total of five), a history window of 43 samples

equivalent to 0.944 s of data, one cycle of cut-off frequency) were

sed and modeled with a line equation y = mx + c . Here x is the

ample index (time), y is the concerned pilot input channel and m

nd c are the line parameters. The parameters m and c are calcu-

ated using the least square method as follows: 

 = 

N 

∑ N 
i =1 x i y i −

∑ N 
i =1 x i 

∑ N 
i =1 y i 

N 

∑ N 
i =1 x i 

2 −
(∑ N 

i =1 x i 
)2 

(2) 

 = 

∑ N 
i =1 x i 

2 . 
∑ N 

i =1 y i −
∑ N 

i =1 x i y i 
∑ N 

i =1 x i 

N 

∑ N 
i =1 x i 

2 −
(∑ N 

i =1 x i 
)2 

(3) 

 is the number of samples in the window, which is 43 in our

ase. To account for non-linearity in the modelling of pilot inputs,

he sum of the absolute errors ( e ) was used as a third parameter

o model pilot input data and was calculated as follows: 

 = 

N ∑ 

i =1 

| y i − ( m x i + c ) | (4) 
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Fig. 5. Topology of Neural Networks used in the WTS. 
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Hence, for every 43 sample window in each pilot input data

channel, three parameters { m,c,e } were obtained. Since there are

five data channels, the pilot input data was characterized by 15

parameters. As discussed in Section 2 , the angular rate measure-

ments depend on the immediate predecessor measurement. In

addition to pilot input data, the latest previous measurements

from the three gyroscope channels were also fed into the neu-

ral network. It is worth noting that despite of possible high fre-

quency noise, no low pass filter was applied on the data to avoid

any temporal interdependence in the data due to the filtering

process. 

In the WTS, four channels of gyroscope data were predicted us-

ing four different neural networks. The first three channels were

three Cartesian components of filtered gyroscope data and the

fourth one was the local standard deviation of the magnitude

of the Gyroscope data. Therefore, each channel of the IMU data

was predicted using a separate Back Propagation Neural Network
Fig. 6. Prediction by neural networks correspond
BPNN). Four layered BPNN with two hidden layers were used for

odeling the Gyroscope data from Pilot RC signals. Each BPNN

ook an 18-dimensional input vector (i.e., 15 pilot data and 3 chan-

els of previous gyroscope measurement sample) to predict a 1-

imensional output (i.e., current sample of the specific channel of

yroscope data). Before feeding the IMU data (Gyroscope) and the

ilot input PWM signals to the neural networks, all the data was

ormalized to zero mean and unit standard deviation to avoid any

umerical issues during the training phase. The actual mean and

tandard deviation of the training data was stored in the com-

uter for scaling and rescaling the telemetry data during the test-

ng phase of the neural networks. 

Fig. 5 shows the general topology of the neural network used

n the system. The size of the input and the output layer, as de-

ermined by the dimensionality of the input and output data, was

5 and 1 nodes respectively. The network topology for the hidden

ayers was selected using ‘trial and error’ method. The number of

odes was varied from 5 to 14 for the first hidden layer and from 2

o 8 for the second hidden layer and the topology giving the high-

st prediction accuracy was selected. 

.2. Neural network training and performance 

Back-Propagation Neural Network training involves assigning

nitial weights randomly; thus, it is possible that the training ac-

uracy obtained from a particular topology is not the ‘best’ set of

hosen parameters. This is due to the fact that the BPNN train-

ng process is analogous to gradient descent algorithm and is sus-

eptible to local minima in the weight-error space while obtain-

ng optimum weights. To overcome this limitation, we trained the

etwork 30 times for each topology and considered the ‘overall

est network’ for the IMU prediction in the ‘trial and error’ pro-

edure. Table 1 shows the network topologies finally selected for

he twelve BPNNs. 10% the total data was used for training and a

0-fold cross validation [22] was applied to prevent overtraining of

he network. 
ing to Heli 1 (showing 25 seconds of data). 
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Fig. 7. Error distributions for the prediction by the neural networks corresponding to the three helicopters. 

Table 1 

BPNN Network Topologies. 

Helicopter Neural Network 

Net1 Net2 Net3 Net4 

L1 L2 L1 L2 L1 L2 L1 L2 

Heli 1 7 6 7 4 8 4 10 4 

Heli 2 7 4 8 6 7 4 11 4 

Heli 3 7 3 7 5 9 3 11 3 
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Table 2 

BPNN Prediction RMS Error (deg/s). 

Helicopter Neural Network 

Net1 Net2 Net3 Net4 

Heli 1 8 .28 5 .93 5 .10 3 .44 

Heli 2 3 .84 6 .81 2 .93 2 .13 

Heli 3 7 .61 17 .16 5 .62 3 .55 

a  

a
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After obtaining the optimum sets of neutral networks for the

hree helicopters, the neural network sets were tested on the re-

aining 90% data. Fig. 6 shows five performance subplots of the

our neural networks in the estimation of the four Gyroscope data

hannels along with pilot inputs for ‘Heli 1 ′ . In these subplots, the

ed colored plots show data obtained from the sensor measure-

ents whereas the blue plots show the predictions from BPNN us-

ng pilot inputs. 

For quantitative analysis of predicting the results, histograms

ere plotted in Fig. 7 showing the prediction error distribution of

he neural networks trained for all three helicopters. In addition to

his, RMS prediction error for the neural networks is also shown in

able 2 . The RMS values of the prediction errors varied between 2
nd 7 deg/s, which is reasonably good for a noisy platform such as

n RC helicopter. 

.3. Air wake estimation with pilot input compensation 

As mentioned previously, the WTS was tested in a naval ap-

lication for ship/air wake pattern detection for determining safe

aunch and recovery envelopes on naval vessels. In such an appli-

ation, it’s important to find flight paths with minimum air wake

ntensity. Air wake intensity is inferred to be proportional to an-

ular speed of tilting. Therefore, it is advantageous to use radial

omponent of Gyroscope data rather than three Cartesian com-

onents to decrease the computational burden. In the proposed

ystem, the gyroscope data was converted to a spherical coordi-

ate system and the absolute magnitude (radial component) was

sed to represent air wake patterns. If { ω x , ω y , ω z } is the filtered
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Fig. 8. Coordinate system on the ship for localizing the helicopter. 
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r  
angular velocity ( ω f ) of the helicopter in Cartesian coordinate sys-

tem measured from the gyroscope and { ω 

′ 
x , ω y 

′ , ω z 
′ } is the angular

velocity ( ω 

′ 
f 
) determined from the Neural Network, then the ra-

dial component of the net angular velocity ( ω r ) due to air wake is

obtained as follows: 

ω r = ‖ ω f − ω f 
′ ‖ . (5)

It is not only the tilting (angular) velocity that accounts for air

wake related problems but also the angular velocity fluctuations

(i.e., angular acceleration). Thus, high air wake zones are character-

ized by both high angular velocity and angular acceleration. This

fluctuation in angular velocity will appear as a peak in the gyro-
Fig. 9. GUI for proposed wire
cope absolute magnitude (radial) component as well as a peak in

he local standard deviation of the gyroscope radial component. In

his paper, we do not consider the direction of air wakes; the radial

omponent (magnitude) of the gyroscope is sufficient for analysis

f air wake patterns. Under the effects of air wake, the helicopter

s supposed to experience high angular accelerations. Such changes

n angular velocities can be measured by local standard devia-

ion of the gyroscope data (radial component). The local standard

eviation was calculated by applying a standard deviation filter

ith a window size of 0.944 s (L samples). The i th sample of the

ocal standard deviation ( ω s ) of the radial component of the raw

yroscope data ( ω) is calculated as follows: 

 s ( i ) = SD ( ω ( i + d ) ) ; i, d ∈ [ 1 , N ] ; d ∈ [ −L/ 2 , L/ 2 ] . (6)

here N is the total number of samples in ω and L is the length

f the filter window. 

A simultaneous rise is expected in the filtered gyroscope data

nd its standard deviation data. The product of both waveforms

point-to-point multiplication) is used to represent air wake inten-

ity. Furthermore, the standard deviation ( ω s ) obtained from the

aw gyroscope data also contains the components of vibrations

rising from pilot inputs. Therefore, there is a need to compen-

ate for it while predicting air wake. For convenience, the gener-

ted waveform is referred to as the ‘Air Wake data’ ( A ω ): 

 ω (i ) = ( ω s (i ) − ω s (i ) 
′ 
) × ω r (i ) ; i ∈ [ 1 , N ] . (7)

here ω s 
′ is the standard deviation of the gyro data predicted

rom the Neural Network. 

. Air wake pattern estimation 

In order to detect air wake patterns, it is important to accu-

ately locate the transmitter carrier in the receiver module’s frame
less telemetry system. 
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Fig. 10. Ship air wake distribution for: (a) test flight with beta angle of 0 °, (b) test flight with beta angle of 15 °. 
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Fig. 11. Calibration of the Wireless Telemetry System. 
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f reference. As mentioned earlier, the proposed system uses GPS

nd IMU to locate the transmitter. The orientation of the receiver

odule was estimated by using the implementation of the tilt

ompensated compass [23] using the accelerometer and magne-

ometer in the receiver module. As shown in Fig. 8 , the heading

ngle of the boat (receiver module) θ is in the geographical frame

f reference. If { λb , φb } and { λh , φh } are the geographical coordi-

ates of the boat and the helicopter, respectively, then the relative

osition of the helicopter w.r.t the boat in Cartesian coordinates is

iven by: 

x h 
y h 

]
b 

= 

[
cos θ sin θ

− sin θ cos θ

]
[ S] 

[
λh − λb 

φh − φb 

]
;

 S] = 

[
11 . 1 0 

0 8 . 6 

]
× 10 

4 (m / o ) . (8) 

To test the system’s performance in an actual air wake mea-

urement, multiple flight operations were conducted in the Chesa-

eake Bay, MD over a period of one year. The test flights were

onducted at a constant height and heading direction of the he-

icopter. The wind conditions were maintained constant within the

pecified limits. Air wake status intensity along with the helicopter

ocation (transmitter carrier) was presented and recorded in real-

ime through the GUI software developed in National Instruments

ab VIEW 

TM . Fig 9 shows the GUI developed to interface with the

ardware and for processing the data in real-time. 

For final estimation of air wake pattern, the air wake data as

btained through ( 7 ) is overlaid on the trajectory of the helicopter

n the form of spatial distribution plots. In these plots, the color

n the helicopter trajectory represents the air wake magnitude af-

er pilot input compensation. Fig. 10 shows sample ship air wake

attern obtained in a test flight of relative wind angle (beta an-

le) 0 ° and 15 °. A black dotted curve shows the region of high air

ake with respect to the flight deck. A high perturbation is de-

ected along the outer regions of the trajectory as the WTS mea-

ured differential wind velocities. This is in accordance with the

ind conditions and related numerical simulations as it is sym-

etric about the centerline of the helicopter trajectory [6,7] . In this

gure, the high air wake region as marked by the dotted curve

s tilted towards the right relative to the stern of the ship, which

gain correlates this result with numerical simulations [6,7] . 

. Conclusion and future work 

This paper proposes a new technique that accurately detects

urbulence patterns in large, open spaces where conventional in-

trumentation cannot be used. Turbulence patterns were mapped
ut relative to a ship using the WTS mounted on an RC helicopter

nd a trained neural network eliminated pilot induced vibrations

rom measured data with good accuracy. This new means of air

ake pattern detection will bring about enhanced flight research

apabilities, and improvements for aerial vehicle design and oper-

tional safety analysis in the Aerospace Industry. Although this pa-

er presents an effective tool for determining air wake distribution

attern, the applications of this system can be broadened. 

Future work includes use of sensitive Inertial Navigation Sys-

em to measure translational velocities and accelerations of the he-

icopter with pilot input compensation. Since the magnitude and

he direction of the helicopter’s velocity is the same as that of

ir wakes, this upgrade will enable the system to determine the

hrust directions and Cartesian components of turbulence forces. In

his paper, BPNNs were used in modeling the contribution of pilot

nput in the helicopter’s dynamics. The authors also plan on im-

lementing Bayesian Regression methods to inherently model data

nd noise separately and hence provide better prediction accuracy.

o convert the air wake measurements from IMU units to actual air

elocity units, the authors plan to calibrate the proposed system

n a closed environment (hangar). Fig. 11 shows the experimental

etup to be used for calibration. During the calibration process the

nstrumentation system will be retrofitted with two lightweight ul-

rasonic anemometers and used to directly measure a known wind

attern generated by fans. The authors plan to further extend this
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work to develop autonomous flight control system capable of re-

jecting external disturbances. 
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