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a b s t r a c t

Obtaining inverse kinematics and dynamics of a robotic manipulator is often crucial for robot control.
Analytical models are typically used to approximate real robot systems, and various controllers
have been designed on top of the analytical model to compensate for the approximation error.
Recently, machine learning techniques have been developed for error compensation, resulting in
better performance. Unfortunately, combining a learned compensator with an analytical model makes
the designed controller redundant and computationally expensive. Also, general machine learning
techniques require a lot of data to perform the training process and approximation, especially in
solving high dimensional problems. As a result, state-of-the-art machine learning applications are
either expensive in terms of computation and data collection, or limited to a local approximation for
a specific task or routine. In order to address the high dimensionality problem in learning inverse
kinematics and dynamics, as well as to make the training process more data efficient, this paper
presents a novel approach using a series of modified Generative Adversarial Networks (GANs). Namely,
we use Conditional GANs (CGANs), Least Squares GANs (LSGANs), Bidirectional GANs (BiGANs) and
Dual GANs(DualGANs). We trained and tested the proposed methods using real-world data collected
from two types of robotic manipulators, a MICO robotic manipulator and a Fetch robotic manipulator.
The data input to the GANs was obtained using a sampling method applied to the real data. The
proposed approach enables approximating the real model using limited data without compromising
the performance and accuracy. The proposed methods were tested in real-world experiments using
unseen trajectories to validate the ‘‘learned’’ approximate inverse kinematics and inverse dynamics
as well as to demonstrate the capability and effectiveness of the proposed algorithm over existing
analytical models.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Identification of the Inverse Kinematics (IK) and the Inverse
Dynamics (ID) plays an important role in precise robot control
and trajectory tracking [1,2]. Existing literature details various
approaches aimed at obtaining precise models of the system
to lower feedback gain and improve adaptability in designing a
stable controller [3,4]. These techniques can be broadly classified
into two categories: analytical methods, and numerical methods.

Analytical methods involve deriving an explicit mathematical
model of the system under consideration from first principles.
However, these methods rely on simplifying assumptions, prior
knowledge, and experimental parameter estimations using the
real system. Imperfections in any of the above can cause the ana-
lytical model to differ from the real system. In most cases, deriv-
ing the underlying mathematical model is unnecessarily compli-
cated, and could suffer from singularities and nonlinearities [5,6].

∗ Corresponding author.
E-mail addresses: hailin@vt.edu (H. Ren), bentzvi@vt.edu (P. Ben-Tzvi).

In contrast, numerical methods are data-driven and can provide
approximate solutions within a desired tolerance [7]. With ded-
icated algorithms and sufficient data collected from real-world
experiments, numerical methods can learn the uncertainty part
in the real system that is difficult to model, and thereby provide
better predictions of the system behavior [8].

Over the past few decades, the applicability of machine learn-
ing has improved greatly along with improvements in the com-
putational capability of hardware. Many techniques have been
developed to solve highly nonlinear problems, such as learning
the sequences of motion primitives for robot manipulation [9],
cleaning a table [10], and generating trajectories for biped robots
to follow ZMP critics [11]. The majority of existing techniques
have focused on solving high-level tasks or trajectory planning,
while using a general model-based controller for the low-level ac-
tions, resulting in a hybrid control system. Reinforcement learn-
ing techniques became popular in the research community due to
the applicability of physics engine simulations [12] and a replay
buffer [13]. However, in many cases, relying on the analytical
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model behind the physics engine instead of using real-world data
builds a gap between the simplified analytical model and the
complex real-world system.

Applying machine learning techniques to acquire the IK and
ID of a given system has a history of almost two decades in the
research community. Karlik et al. worked on finding the best
Artificial Neural Network (ANN) configuration to solve the IK
problem for a six Degree-of-Freedom (DOF) robotic arm [14].
Comparison of Radial Basis function network (RBF) and Multi-
layer Perceptron Network (MLP) in solving IK of a 6-DOF arm
was performed in [15]. A neural network architecture, combined
with evolutionary techniques were used to solve the IK of a 6-
DOF Stanford robotic manipulator in [16]. In addition to planar
manipulators [17], the IK of a spatial 3-DOF structure was stud-
ied in [18]. Instead of using a single-agent neural network to
solve the kinematic problem, Ansari et al. applied actor-critic
architecture (two agents in one neural network architecture) to
learn the IK of a 6-DOF robotic manipulator inside a reinforce-
ment learning environment. However, this work explored only
a discrete action space (joint space) instead of the continuous
action space [19]. In addition to offline training techniques, an
adaptive online strategy based on the Lyapunov stability theorem
was presented to solve for the IK of redundant manipulators
in [20]. Multiple soft computing algorithms for solving the IK of
different robotic manipulators were compared in [7]. However,
the majority of existing works used analytical models as ground
truth or used analytic models embedded inside physics-based
simulations, instead of using the dataset collected from the real
world.

Compensation methods using reinforcement learning were
developed for better trajectory following, and the learning pro-
cess was demonstrated in real-world online conditions [1]. Even
though the compensator was learned, they also used analytical
models inside the controller.

Compared to the IK, learning the ID is more difficult due to the
high dimensionality of the input. To address this issue, existing
techniques in this domain have used analytical models along with
learning approaches to handle the modeling error. To this extent,
Meier et al. proposed a nonlinear function approximator to learn
a constant error model in order to improve tracking performance
on specific trajectories [21]. On the other hand, Rayyes et al.
proposed learning the inverse statics model by taking advantage
of the symmetry of the robot [22]. However, the improved ef-
ficiency offered by this method is limited to symmetric robot
designs. Machine learning methods have also been used to learn
rich dynamics as in the case of a soft robotic manipulator [8,23,
24]. Deep learning networks along with physics-based simulators
have also been used to study robot dynamics [25]. Reinforcement
learning techniques have also been used to learn the closed-loop
predictive controller for a real robot [8].

Similar to other numerical methods, the need for a large
dataset plays an important role in training the neural network
to approximate the target model. As such, data collection is the
most time consuming and expensive part in the global estima-
tion of the ID. The proposed approach in [8] requires real-world
data collection lasting approximately two hours to develop a
closed-loop controller from scratch. To overcome the problem of
training a neural network with limited data, Generative Adver-
sarial Networks (GANs) were proposed by the computer vision
research community. The idea was to create additional ‘‘fake’’
data similar to the real world data, and thereby enlarge the total
dataset available for training the target neural network [26–28].
GANs have also been used in inverse reinforcement learning to
recover the reward functions embedded in training environments
to perform specific tasks [29,30]. In a similar fashion, our work
aims to approximate the real model globally using a limited real-
world dataset, which is augmented with fake data generated
using GANs. The main contributions of this paper are as follows:

Fig. 1. 4-DOF MICO robotic manipulator with coordinate frame assignment.

• We extend the success of GANs used in the domain of
computer vision towards learning the IK and the ID in cases
where real-world data collection is expensive and highly
nonlinear with high dimensional inputs.

• Four types of popular GANs, namely, CGANs [31], LSGANs
[32], BiGANs [33], and DualGANs [34] were modified for ap-
plicability towards solving the IK and the ID problems. Per-
formance of these methods was compared over the unseen
real-world trajectories.

• Experimental evaluation of these methods was performed
on a 3-DOF MICO robotic manipulator [35] and a 8-DOF
Fetch robotic manipulator. To test the efficiency of the pro-
posed modified GANs, all training processes were performed
on a limited real-world dataset (collected over a period of
40 mins). The performance of the training process was also
evaluated using different sizes of the partial dataset and
different deviations for the generator in the GANs.

The rest of paper is organized as follows. Section 2 introduces
the IK and ID of the robotic manipulators used in this paper.
A brief introduction of generative adversarial networks (GANs)
is also presented. Section 3 describes the modified GANs for
learning the IK and ID. Details on the design of the neural network
and sampling methods are presented. Section 4 discusses the
simulation and experiment results. Finally, Section 5 concludes
the work with directions for future research.

2. Preliminaries

2.1. Inverse kinematics and inverse dynamics

Kinematics describe the relationship between the coordinates
in the joint space, q and the ones in the task space, x. The
forward kinematics map the joint space to the task space, FK :

q → x while the inverse kinematics presents the opposite
mapping, IK : x → q. Many methods have been developed to
solve the kinematics problem, such as the geometric method and
the Denavit–Hartenberg (DH) method. The closed loop equations
have singularities and nonlinearities and thereby make the IK
solving computationally expensive [5].

In this paper, we use a MICO robotic manipulator [35] and
a Fetch robotic manipulator [36] as the experimental platforms
for solving the IK and ID problems. As shown in Figs. 1 and 2,
we used the standard Denavit–Hartenberg (DH) method for the
coordinate frame assignments. With respect to the Fetch robotic
manipulator, the head pan and tilt motions are trivial, and thus
not considered in this paper. The transformation matrix from
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Table 1
DH parameters and joint ranges of the MICO robotic manipulator.
Joint i ai−1 αi−1 (rad) di θi (rad) θi limitations (rad)

1 0 0 L0 + L1 q1 [−π, π]

2 0 −π/2 0 q2 [−11/18 ∗ π, 1/9 ∗ π ]

3 L2 0 0 q3 [−23/36 ∗ π, 5/36 ∗ π ]

4 0 −π/2 L3 + L4 q4 [−π, π]

Fig. 2. 8-DOF Fetch robotic manipulator with coordinate frame assignment.

frame i, Fi, to frame j, Fj, is denoted as iTj. The transformation
matrix from the base frame to the end-effector frame, 0TE , can
thus be obtained by multiplying the transformation matrices
between intermediate frames, iTi+1, recursively,

0TE =

n∏
i=0

iTi+1 =

[
0RE

0PE
0 1

]
(1)

where 0RE , 0PE are the rotation matrices from the base frame to
the end-effector frame and the position vector of the end-effector
in the base frame, n is the number of intermediate frames. The
corresponding DH parameters are presented in Tables 1 and 2,
respectively.

Dynamics correlates the torque and the force in each joint to
the position, velocity and acceleration of the joint along with the
external forces applied to the robot. The dynamics problem can
be solved by various methods such as the Newton–Euler method,
Lagrangian method, or Hamilton method. In this paper, we ap-
plied the Newton–Euler method along with the DH parameters
to solve for the dynamic model of the robotic arm. The inverse
dynamics of the robotic arm can be expressed as,

τ = M(q)q̈ + C(q, q̇)q̇ + G(q) + J⊤F (2)

where, M is the generalized inertial matrix, C is the generalized
bias force including Coriolis, centrifugal forces, and friction terms,
G is the gravitational force, J is the Jacobin matrix, and F is the
external force applied to the end effector. Tables A.6 and A.7 in
Appendix show the geometric and inertial properties of each link
obtained from the Computer Aided Drawing (CAD) files for the
MICO and the Fetch robotic manipulators, respectively. The mo-
ment of inertia is measured at the Center of Mass (CoM) of each
link, aligned with its local coordinate system. q, q̇, q̈, τ present the
vectors of joint position, velocity, acceleration and generalized
force variables, respectively. The inverse statics model can be
obtained by setting the vectors of joint velocity and acceleration
to zero, q̇ = q̈ = 0. In this work, we do not apply any external
force and torque to the end effector, which results in F = 0.

2.2. Generative adversarial networks (GANs) and variants

2.2.1. GANS and conditional GANs
Goodfellow et al. introduced Generative Adversarial Networks

(GANs) for the first time in 2014 [37], followed by a series of
GANs-family methods being developed for a wide variety of prob-
lems including generative tasks and discriminative tasks. Fig. 3
shows the original network structure of GANs. In the original
formulation, GANs includes a generator G and a discriminator D.
The generator is trained to learn a mapping from a low-dimension
latent vector, z ∈ Z independent and identically distributed
samples from a known prior pz , to points in the space of natural
data X , while the discriminator, D is trained to learn a map X ↦→

[0, 1] that could determine if a sample x ∈ X is from the natural
dataset, x ∼ pdata(x), or generated from the generator, x ∼ G; z ∼

pz . Thus, the training process is to optimize the D to assign correct
labels to both the natural dataset and the samples from the G, and
optimize the G to minimize log(1 − D(G(z))) simultaneously. The
minimax objective for the GANs is formulated as follows

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+Ez∼pz (z)[log(1−D(G(z)))]

(3)

The Conditional Generative Adversarial Networks (CGANs) [26,
31] extended the original GANs to make both the Generator and
the Discriminator be conditioned on additional information y,
G(z|y) and D(x|y). The generator, G, takes the combined informa-
tion of y and latent vector z as inputs while the discriminator, D,
takes data x and y as inputs. The objective function of CGANs thus
becomes,

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x|y)]

+ Ez∼pz (z)[log(1 − D(G(z|y)))]
(4)

2.2.2. Least square GANs (LSGANs)
The cross-entropy loss function proposed in the original for-

mulation, Eq. (3), minimizes the Jensen–Shannon divergence be-
tween pdata(x), the data distribution, and pg (z), the implicit dis-
tribution of the generator when z ∼ PZ [37]. To overcome the
difficulty and failure in training GANs using the original objective
function, Mao et al. adopted a least squares loss function with
a−b coding scheme for the discriminator and showed that mini-
mizing the objective function of LSGANs yields a minimization of
the Pearson χ2 divergence [32]. The proposed objective functions
in LSGANs are defined as follows,

min
D

VLSGAN (D) =
1
2
Ex∼pdata(x)[(D(x) − b)2]

+
1
2
Ez∼pz (z)[(D(G(z)) − a)2]

min
G

VLSGAN (D) =
1
2
Ez∼pz (z)[(D(G(z)) − c)2]

(5)

where a and b denote the labels for fake data and real data,
respectively. c denotes the value that G wants D to believe to be
for fake data. Suggested by the parameters selection in [32], 0−1
binary encoding scheme is used in this paper, where a = 0, b =

1, c = 1.
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Table 2
DH parameters and joint ranges of the Fetch robotic manipulator.
Joint i ai−1 αi−1 (rad) di θi (rad) θi,Di limitations (rad, mm)

1 L0 0 L1 + D1 0 [0, 400]
2 L2 −π/2 L3 θ1 [−23/45 ∗ π, 23/45π ]

3 0 −π/2 0 −π/2 + θ2 [−7/18 ∗ π, 29/60 ∗ π ]

4 0 π/2 L4 + L5 θ3 Continuous
5 0 −π/2 0 θ4 [−43/60 ∗ π, 43/60 ∗ π ]

6 0 π/2 L6 + L7 θ5 Continuous
7 0 −π/2 0 θ6 [−25/36 ∗ π, 25/36 ∗ π ]

8 0 0 L8 + L9 θ7 Continuous

Fig. 3. Network structure of Generative Adversarial Networks (GANs).

Similarly, Arjovsky et al. suggested to minimize the smoother
Wasserstein-1 distance between the generated and the natural
data distributions, thereby proposing the Wasserstein GANs [38],

W (pdata, pz) = sup
∥f ∥L≤1

Ex∼pdata(x)[f (x)] − Ez∼pz (z)[f (z)] (6)

where ∥f ∥L ≤ 1 : X ↦→ R is the family of functions that are 1-
Lipschitz. To minimize the Wasserstein distance, a similar value
function is used to optimize the training process,

VWGAN (Dw,G) = Ex∼pdata(x)[Dw(x)] − Ez∼pz (z)[Dw(G(z))] (7)

With this formulation, Dw : X ↦→ R is trained to serve as a
function in computing the Wasserstein distance.

2.2.3. Bidirectional GANs (BiGANs) and DualGANs
Besides exploring the optimization in the objective functions,

efforts have also been applied in designing a new architecture.
Bidirectional Generative Adversarial Networks (BiGANs) provide
Generative Adversarial Networks (GANs) with the means for
learning the inverse mapping, projecting the data, x ∈ X , back
into its latent space, z ∈ Z , [33]. An encoder, E, in BiGANs is
trained to invert the generator G without direct communication
with the generator, G. Similar to the BiGANs, DualGANs was
proposed with two discriminators and two generators to learn
the mappings between the two spaces, X and Z . The primal
GANs learns the translation from space Z to space X , while the
dual GANs learns to invert the task. With two discriminators and
closed loop architecture, DualGANs perform better in translating
between the two spaces [34].

3. Proposed algorithm

This section describes the proposed GAN architecture to ap-
proximate the IK and the ID of both MICO and Fetch robotic
manipulators using real-world data.

3.1. Conditional generative adversarial networks and least squares
generative adversarial networks

In the original GANs, the generator priors on latent vectors
z ∈ Z as the inputs and produces the data x ∈ X . To satisfy
the mathematical model of the IK and the ID, each piece of data,

Fig. 4. Conditional Generative Adversarial Networks (CGANs) for the IK and the
ID.

[I ∥ O] ∼ Pdata, consists of both the input I and the expected
output O for IK and ID. ∥ represents the concatenated form of
data I and O in the dataset. In solving the IK, the position vector
of the end effector in the workspace xe ∈ Xend is used as the input
I , while the joint states qk ∈ Qk that result in the corresponding
position of the end effector form the output O. For the ID, the
joint states along with their first and second derivatives, q, q̇, q̈,
are used as the input I , while the vectorized force, τ , presents
the output O. As shown in Fig. 4, the discriminator, D, takes
in one piece of data, [I∥O] or [I∗∥O∗

] and outputs the validity
of whether this piece of data is from the natural dataset or
generated from the generator, G. We denoted [I∗∥O∗

] as the data
generated from the generator. Based on the I part of the data
sampled from the natural dataset with the predefined variance,
σ 2, I∗ is sampled using Gaussian Distribution N (I, σ 2) along with
each input dimension. I∗ is then fed into the generator, and it
outputs O∗. I∗ is then concatenated with O∗ as a single instance of
fake data to pit against the discriminator. The objective function
of the modified CGANs is,

min
G

max
D

V (D,G) = E[I∥O]∼pdata([I∥O])[logD(O|I)]

+ EI∗∼N (I,σ2)[log(1 − D(G(I∗)|I∗))]
(8)
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Fig. 5. Bidirectional Generative Adversarial Networks (BiGAN) for the IK and the ID.

Fig. 6. Dual Generative Adversarial Networks (DualGAN) for the IK and the ID.

In accordance with the approach described in [32], the pro-
posed LSGAN architecture replaces the cross-entropy loss term
in the objective function Eq. (8) above, with the 0 − 1 binary
coding scheme in order to enforce the generator-discriminator
architecture to produce realistic data,

min
D

VLSGAN (D) =
1
2
E[I∥O]∼pdata([I∥O])[(D(O|I) − 1)2]

+
1
2
EI∗∼N (I,σ2)[(D(G(I

∗)|I∗))2]

min
G

VLSGAN (D) =
1
2
EI∗∼N (I,σ2)[(D(G(I

∗)|I∗) − 1)2]

(9)

Details in picking the standard deviation σ for training are
presented in Section 3.4

3.2. Bidirectional generative adversarial networks

Bidirectional Generative Adversarial Networks (BiGANs) pro-
vide one extra component, encoder E, to the Generative Adversar-
ial Networks. The encoder E in the original BiGANs aims to learn
the hidden mapping from the data space to the latent noise space.
With this architecture, BiGANs can learn both the forward and
inverse mapping at the same time during the training process.
With the same idea, the proposed network architecture, as shown
in Fig. 5, embeds an encoder to provide the inverse mapping of
the studied problem. An additional sampler is built to generate
additional ’’fake’’ data, O′, based on the sample data, O, from the

natural dataset. These additional samples O′ and the correspond-
ingly generated I ′ are then used to train the encoder E and the
discriminator for the generator G. In the original formula of Bi-
GANs [33], the data pairs [I ′∥O′

] generated from the encoder E are
believed to be natural data. To supervise the encoder’s learning
process of inverse mapping and thereby improve the stability of
the optimization procedure, one additional optimization loop, L,
is proposed in the network. In the added loop, the generator takes
in data I and outputs data O. The data O is then mapped back to
I ′ via the encoder. The corresponding loss function of the loop
is defined as the L2 distance between the original data I and the
processed data I ′,

L = ∥I − I ′∥2 = ∥I − E(G(I))∥2 (10)

The following loop loss is added to the BiGANs objective function,

min
GE

max
D

V (D,G) = E[I∥O]∼pdata([I∥O])[logD(O|I)]

+ EI∗∼N (I,σ2
I )

[log(1 − D(G(I∗)|I∗))]

+ EO∗∼N (O,σ2
O )

[log(1 − D(O∗
|E(O∗)))]

(11)

Details in picking the standard deviations σI and σO for training
are presented in Section 3.4.

3.3. Dual-generative adversarial networks

DualGANs were proposed to create the mapping between two
domains I and O. Compared to the derivatives of the GANs men-
tioned above, it consists of two GANs roughly with one GAN for
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Table 3
Hyperparameter tuning for neural networks.
Parameters Choices Final selected parameters

Number of layers [3, 4, 5, 6, 7, 8] 3 for IK
5 for ID

Number of neurons in hidden layers [128, 256, 512, 1024] 256
Activation functions in hidden layers [‘ReLU’, ‘Sigmoid’, ‘Leaky ReLU’] ’Leaky ReLU’
Parameters for ‘Leaky ReLU’ [0.1, 0.3, 0.4, 0.5, 0.7, 0.9] 0.1

forward mapping learning and one for inverse mapping learning.
As shown in Fig. 6, the proposed DualGANs are composed of
GAN-A and GAN-B. GAN-A (whose components are denoted with
subscript A) is built to generate ‘‘fake’’ O prior on I , while GAN-B
does the inverse job. Two additional optimization loops L1 and L2
are embedded in the network architecture. In optimization loop
1, samples I are transferred to O space via generator GA then
transferred back to I space via generator GB as I∗. The L2 distance
between I and I∗ are used as the objective function to optimize
both GA and GB. A similar procedure is being performed in loop
2. As advocated in the original DualGANs [34], Wasserstein-1
distance is used to define the loss of both discriminators, DA and
DB,

ldA(I,O) = DA([I∗ ∥ GA(I∗)]) − DA([I ∥ O]) (12)

ldB(I,O) = DB([GB(O′) ∥ O′
]) − DB([I ∥ O]) (13)

3.4. Data standardization and hyperparameter tuning

Feature scaling is an important process for data preparation
in machine learning, especially when the range of values of raw
data varies widely [39]. Considering the different ranges of the
joint position as shown in Tables 1 and 2, the real-world data
collected is standardized by removing the mean and scaling to
unit variance before being processed to the training and valida-
tion dataset. With a unit variance for each data channel, standard
deviation can be selected for the generator to generate input
samples. A comparison of using different standard deviations
for the generators is performed to evaluate their impact on the
training performance in the Section 4.

To ensure optimal performance of each of the proposed meth-
ods, Hyperopt [40] was used for hyperparameters tuning. The
tuned hyperparameters include the number of layers nl, the num-
ber of neurons in each layer nn, the activation functions used
for the neurons in each layer, except the final output layer fa,
and the parameters for the activation, fp, if needed. In order to
ensure realistic comparison, tuning was performed to optimize
the cumulative performance of all proposed methods, and the
same set of tuned parameters were used across all proposed
architectures. Details of the choices and tuned hyperparameters
are presented in Table 3.

4. Training and experiment

4.1. Data collection for MICO robotic manipulator

To avoid overfitting of the training model in local paths, ran-
dom trajectories, instead of predefined trajectories, were gen-
erated for the end effector of the MICO robotic manipulator
to follow. Each trajectory consisted of multiple waypoints, dis-
tributed over the whole actuation space (joint space). In sampling
the waypoints, two criteria were used to ensure the feasibility
and safety in achieving the desired motion: (1) the joint positions
should fall within the feasible configuration space and, (2) the z
position of end effector, calculated from the forward kinematics,
should be greater than 0.2 m to avoid the robotic manipulator
from crashing into the table where the base was fixed. Cubic
polynomials were used to generate the desired smooth motion

Fig. 7. The control and monitoring system was built in Simulink with QUARCTM .

between two consecutive waypoints in the trajectories, ensuring
zero velocity constraints at each waypoint.

f (t) = a + bt + ct2 + dt3 (14)

Fig. 1 shows the experimental setup. MATLAB Simulink and
Quanser’s QUARCTMsoftware were used to control and monitor
the MICO robotic manipulator as shown in Fig. 7. The trajectory
is planned in the joint space, q_traj, and then sent to a QUARC
Simulink block to control the low-level joint actuators. The status
data, such as the torque at each of the joints and the real-time
joint positions were also collected using the QUARC Simulink
block. Besides the joint status, the QUARC Simulink block also
provides the position of the end effector using a predefined for-
ward kinematics model. A data logger was built inside the system
to collect all the data necessary for the neural network training.

Six trajectories were tracked, and each trajectory lasted for
800 s, with 100 intermediate waypoints. The interval between
each consecutive waypoint was set to be 8 s taking into consider-
ation the actuator specifications. Random seeding was used inside
the trajectory generation program to avoid similar trajectories
from being generated. The raw data was collected at 500 Hz,
including the position, velocity, acceleration, and torque in the
joint space, as well as the position of the end effector in the
Cartesian coordinates. The data at the beginning and the end of
the trajectories was removed, and the rest was downsampled to
reduce the data size. A low-pass filter with a window size of 50
was applied to remove noise and then further downsampled. The
post-processed data for each trajectory lasts for about 120 s with
12,000 data samples. Fig. 8 shows one of the trajectories without
standardization as an example.

4.2. Data collection for fetch robotic manipulator

The Fetch robotic manipulators are controlled and system
states can be monitored via Robot Operating System (ROS) [41].
With similar approach in generating the random trajectories of
MICO robotics manipulator, waypoints are sampled over the ac-
tuation space except for the head pan and head tilt joints. As
shown in Fig. 9, the waypoint generator sends waypoint samples
to the MoveIt trajectory planner. The built-in MoveIt trajectory
planner is in charge of determining whether the proposed way-
points are feasible or not by considering self-collision and col-
lision with the ground plane. Only the feasible waypoints will
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Fig. 8. One sample of the trajectories of MICO Robotic Manipulator in a real experiment.

Fig. 9. The control and monitoring system was built in ROS.

be used to generate smooth trajectories by MoveIt and then
performed by the real-world robotic manipulator. A ROS bag is
created to record the system states, such as the frame coordi-
nates, joint position and force/torque applied on the joints. Two
trajectories were randomly generated and performed by the Fetch
robotic manipulator. Each Trajectory lasts for 2400 s with around
600 feasible intermediate waypoints and raw data was collected
at 100 Hz. Similar process was performed on the collected data
to remove the noise and achieve downsampling, and the final
dataset for each trajectory includes around 60,000 data samples.
Fig. 10 shows one of the trajectories without standardization as
an example.

4.3. Neural network design and training

The neural network architecture was built using Keras [42]
with TensorFlow [43] running in the backend. To compare the
performance between each network architecture, the same hy-
perparameters and optimizer were used. This includes the num-
ber of layers (three layers for the IK and five layers for the ID),
number of neurons in each layer (256), activation function (Leaky
ReLU with α = 0.1) and the optimizer (Adam [44]).

For the MICO robotic manipulator, five of the performed tra-
jectories were used to build the dataset for training purposes
while the remaining trajectory was used for final performance
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Fig. 10. One sample of the trajectories of fetch robotic manipulator in real experiment.

testing, which is defined as the test dataset in this paper. For the
Fetch robotic manipulator, one trajectory was used for training
purposes and the other one was used as the test dataset. The
dataset was standardized in either case to remove the wide range
difference among different data channels (feature) to gain faster
convergence and more stable training process. Different standard
deviation values (σ ∈ {0.0, 0.2, 0.4, 0.6}) were selected for the
generator G in the GANs to evaluate the training performance of
the proposed methods.

To evaluate the training performance of the proposed methods
using limited data, a comparison of using different sizes of the
overall data (p ∈ {1, 2, 3, 4, 5, 6} × 10, 000) for the training
process was performed. In each training process, the dataset
is further split into training and validation sets randomly. The
training set consists of 80% of the whole data while the validation
set covers the remaining 20%.

The training process was performed using an AMD Threadrip-
per 2950x CPU and an NVIDIA Titan Xp GPU. Root Mean Squared
Error (RMSE) was used for quantitative evaluation of the training,
RMSE =

√
1
n

∑n
i=1(Yi − Ŷi)2, where Ŷi is the predicted values of

Yi. Each pair of dataset size and standard deviation was applied to
the proposed methods and the baseline method to perform train-
ing for the IK and ID. Each training process includes 100 training
epochs, and each training epoch covers all the training dataset.
At the end of the each training epoch, validation dataset is used

to evaluate the performance of the well-trained neural network
on the unseen dataset selected for training, which is relatively
smaller than the test dataset. To test the overall performance
and the generalization of the well-trained neural network using
the limited dataset, test dataset was used to estimate its overall
performance over the whole actuation space. The training process
of each proposed method and the baseline method takes around
23 mins to train the whole 60,000 dataset. The execution time of
the generator neural network takes around 0.17 ms to perform
a single prediction. For every IK and ID learning task, all of the
proposed neural network algorithms converge.

Tables 4 and 5 detail the best performance of each proposed
method using different dataset sizes and standard deviations for
the generator for the IK and ID of the MICO and Fetch robotic
manipulators, respectively. Each column of the method has two
subcolumns, the first one is the loss function evaluated by the
evaluation dataset and the second one is evaluated by the test
dataset. For every task, 6 different sizes of dataset were used and
defined by the first digit of Da#-Dev#. For example, Da4 indicates
that 4×10, 000 data points were used for the training. For every
task and every size of the dataset, 4 different standard deviations
were used for the generator, which is defined by the second
digit of Da#-Dev#. For example, Dev2 indicates σ = 2 × 0.2 is
applied in the generator. In the loss function evaluation of both
validation dataset and training dataset, the predicted and ground-
truth values were transformed back to the original data scale by
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Table 4
Comparisons on the MICO robotic manipulator over the whole testing trajectory with different dataset sizes and
standard deviations.
Algorithm BiGANsa DualGANs GANs LSGANs Baseb

Inverse kinematicsc

Da1-Dev0d 0.12 0.4 0.75 0.73 0.11 0.4 0.92 1.04

0.04 0.54Da1-Dev1 0.08 0.48 0.62 0.7 0.09 0.39e 0.87 1
Da1-Dev2 0.09 0.44 0.78 0.76 0.11 0.46 0.81 0.98
Da1-Dev3 0.5 0.53 0.8 0.8 0.11 0.41 0.97 1.02

Da2-Dev0 0.1 0.34 0.52 0.64 0.09 0.31 0.19 0.38

0.03 0.36Da2-Dev1 0.1 0.46 0.52 0.66 0.16 0.36 0.12 0.37
Da2-Dev2 0.08 0.37 0.56 0.65 0.17 0.38 0.11 0.55
Da2-Dev3 0.18 0.38 0.55 0.68 0.16 0.38 0.09 0.37

Da3-Dev0 0.15 0.28 0.27 0.5 0.09 0.26 0.42 0.8

0.05 0.29Da3-Dev1 0.13 0.32 0.32 0.51 0.08 0.29 0.08 0.33
Da3-Dev2 0.22 0.38 0.29 0.5 0.1 0.3 0.09 0.54
Da3-Dev3 0.14 0.33 0.32 0.48 0.15 0.34 0.17 0.75

Da4-Dev0 0.11 0.22 0.33 0.47 0.1 0.25 0.16 0.29

0.06 0.26Da4-Dev1 0.1 0.23 0.31 0.43 0.1 0.27 0.09 0.23
Da4-Dev2 0.1 0.24 0.28 0.4 0.11 0.24 0.16 0.68
Da4-Dev3 0.11 0.26 0.37 0.54 0.11 0.26 0.1 0.27

Da5-Dev0 0.15 0.22 0.25 0.36 0.1 0.2 0.16 0.23

0.06 0.22Da5-Dev1 0.11 0.22 0.2 0.33 0.11 0.23 0.14 0.24
Da5-Dev2 0.1 0.23 0.49 0.6 0.11 0.24 0.15 0.26
Da5-Dev3 0.12 0.25 0.29 0.43 0.17 0.24 0.15 0.25

Da6-Dev0 0.15 0.18 0.14 0.17 0.13 0.18 0.14 0.18

0.09 0.16Da6-Dev1 0.13 0.18 0.15 0.19 0.13 0.17 0.13 0.18
Da6-Dev2 0.16 0.19 0.19 0.22 0.13 0.17 0.12 0.18
Da6-Dev3 0.16 0.19 0.22 0.24 0.13 0.2 0.12 0.21

Inverse dynamicsf

Da1-Dev0 0.07 0.45 0.48 0.72 0.1 0.47 0.12 0.51

0.01 0.3Da1-Dev1 0.03 0.47 0.33 0.57 0.03 0.51 0.03 0.48
Da1-Dev2 0.05 0.46 0.34 0.61 0.04 0.5 0.04 0.5
Da1-Dev3 0.07 0.47 0.36 0.62 0.05 0.5 0.04 0.52

Da2-Dev0 0.04 0.37 0.28 0.42 0.08 0.38 0.15 0.38

0.02 0.26Da2-Dev1 0.03 0.39 0.45 0.55 0.03 0.37 0.04 0.36
Da2-Dev2 0.06 0.38 0.31 0.46 0.04 0.39 0.05 0.41
Da2-Dev3 0.08 0.38 0.29 0.5 0.06 0.41 0.07 0.39

Da3-Dev0 0.04 0.36 0.25 0.46 0.06 0.36 0.08 0.36

0.02 0.25Da3-Dev1 0.03 0.36 0.31 0.47 0.03 0.36 0.04 0.36
Da3-Dev2 0.05 0.36 0.25 0.46 0.04 0.36 0.06 0.37
Da3-Dev3 0.07 0.37 0.3 0.48 0.06 0.36 0.07 0.36

Da4-Dev0 0.03 0.34 0.26 0.4 0.06 0.32 0.06 0.34

0.02 0.21Da4-Dev1 0.03 0.33 0.27 0.4 0.03 0.32 0.04 0.32
Da4-Dev2 0.05 0.34 0.28 0.38 0.04 0.32 0.05 0.33
Da4-Dev3 0.07 0.33 0.34 0.43 0.07 0.33 0.07 0.34

Da5-Dev0 0.04 0.33 0.31 0.38 0.05 0.3 0.05 0.3

0.02 0.19Da5-Dev1 0.03 0.32 0.26 0.41 0.03 0.3 0.03 0.3
Da5-Dev2 0.05 0.32 0.29 0.36 0.04 0.29 0.06 0.3
Da5-Dev3 0.08 0.31 0.32 0.41 0.07 0.32 0.08 0.3

Da6-Dev0 0.04 0.23 0.17 0.25 0.05 0.22 0.06 0.22

0.02 0.14Da6-Dev1 0.04 0.23 0.18 0.29 0.04 0.22 0.04 0.22
Da6-Dev2 0.07 0.24 0.31 0.35 0.06 0.23 0.06 0.23
Da6-Dev3 0.09 0.24 0.39 0.43 0.09 0.23 0.1 0.24

aThe first subcolumn under each method is the validation loss and the second subcolumn is the test loss.
bA fully connected neural network is applied as the baseline.
cThe loss was calculated using RMSE, each term of the loss function was inverse-transformed back to the original
data scale by the standard scaler.
dDa#-Dev#, first digit indicates the size of data used for training , the second digit indicates the applied standard
deviation for the generator. For example, Da4-Dev2 indicates that 4× 10, 000 data is used for training process and
σ = 2 × 0.2 is used for the generator.
eThe bold value indicates the best performance among the methods using the same-size dataset.
fThe loss was calculated using RMSE, each term of the loss function was inverse-transformed back to the original
data scale by the standard scaler.

the standard scaler. Considering training on the same dataset size,
the value of the best performance is highlighted in the table.

In solving the IK task of the MICO robotic manipulator, the
proposed method, GANs, achieved the best performance when
using the dataset in the least size. As the size of the dataset used
for training increases, this advantage becomes smaller. All the

proposed methods and the baseline achieved similar performance
when using the whole dataset (including all five trajectories).
In solving the ID task of the MICO robotic manipulator, the
baseline methods slightly outperformed all the proposed methods
considering the wide range of the generalized force executed
at each joint. GANs and LSGANs achieve the best performance
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Table 5
Comparisons of Proposed Methods on the Fetch Robotic Manipulator over the whole testing trajectory with different
dataset sizes and standard deviations.
Algorithm BiGANsa DualGANs GANs LSGANs Baseb

Inverse kinematicsc

Da1-Dev0d 0.94 0.96 0.93 0.95 1 1.01 2.14 2.14

0.61 0.92eDa1-Dev1 0.95 0.96 0.93 0.95 0.97 0.98 1.26 1.26
Da1-Dev2 0.92 0.96 0.93 0.95 0.95 0.97 1.17 1.17
Da1-Dev3 0.94 0.95 0.93 0.95 0.95 0.97 2.5 2.5

Da2-Dev0 0.97 0.98 0.9 0.91 1.01 1.02 1.06 1.06

0.71 0.9Da2-Dev1 0.97 0.97 0.96 0.96 0.97 0.97 1.42 1.42
Da2-Dev2 0.96 0.98 0.92 0.92 1 1.01 1.12 1.12
Da2-Dev3 0.95 0.97 0.92 0.94 0.98 0.99 1.14 1.14

Da3-Dev0 1.05 1.05 0.91 0.93 0.99 0.98 1.08 1.08

0.72 0.89Da3-Dev1 1 1 0.9 0.92 1.02 1.02 1.06 1.06
Da3-Dev2 1.02 1.03 0.91 0.93 1.04 1.02 1.02 1.02
Da3-Dev3 1.02 1.05 0.9 0.92 0.98 1.02 1.1 1.1

Da4-Dev0 1.04 1.05 0.9 0.91 0.99 0.99 1.19 1.19

0.74 0.89Da4-Dev1 0.99 1 0.92 0.94 1 1.04 1.15 1.15
Da4-Dev2 1 1.02 0.9 0.93 1.02 1.05 1.22 1.22
Da4-Dev3 1 1.03 0.91 0.92 1.02 1.04 1.2 1.2

Da5-Dev0 0.98 1 0.93 0.94 1.04 1.05 1.15 1.15

0.76 0.89Da5-Dev1 1 1.04 0.91 0.92 1.01 1.03 1.13 1.13
Da5-Dev2 1.03 1.05 0.92 0.94 1.07 1.1 1.08 1.08
Da5-Dev3 0.99 1.01 0.9 0.92 1 1.03 1.18 1.18

Da6-Dev0 1 1.04 0.91 0.93 1.01 1.07 1.15 1.15

0.73 0.9Da6-Dev1 1.02 1.07 0.92 0.94 0.97 1 1.17 1.17
Da6-Dev2 0.99 1.02 0.9 0.92 0.99 1.03 1.16 1.16
Da6-Dev3 1.03 1.06 0.9 0.93 1.02 1.06 1.08 1.08

Inverse dynamicsf

Da1-Dev0 2.77 13.43 15.46 14.32 2.88 13.65 3.51 13.66

1.4 14.22Da1-Dev1 2.16 13.45 16.6 13.84 2.45 13.95 2.94 13.39
Da1-Dev2 2.5 13.5 14.43 13.65 2.57 13.83 2.37 13.68
Da1-Dev3 2.93 13.77 13.58 14.6 3.07 13.89 2.62 14.1

Da2-Dev0 2.45 13.39 14.89 13.43 3.76 13.27 3.12 13.31

1.45 13.6Da2-Dev1 2.06 13.24 12.87 13.78 2.61 13.5 2.53 13.27
Da2-Dev2 2.54 13.26 14.58 13.61 2.65 13.55 2.43 13.36
Da2-Dev3 3.02 13.49 14.31 13.7 3.06 13.54 2.76 13.4

Da3-Dev0 2.49 13.18 14.25 13.44 2.89 12.88 3.21 12.97

1.5 13.23Da3-Dev1 2.29 13.31 13.41 13.23 2.48 13 2.81 13.11
Da3-Dev2 2.54 12.9 13.54 13.29 2.85 13.17 2.51 13.17
Da3-Dev3 3.08 12.99 13.39 13.38 3.41 13.38 3.25 13.24

Da4-Dev0 2.42 13.12 13.19 13.28 2.68 12.79 3.16 12.85

1.6 13.07Da4-Dev1 2.3 12.99 13.17 13.28 2.59 13.13 2.71 12.83
Da4-Dev2 2.61 12.89 13.3 13.43 3.2 13.25 2.66 13.13
Da4-Dev3 3.28 12.87 12.29 13.43 3.67 13.18 3.19 12.96

Da5-Dev0 2.47 12.83 13.38 13.33 2.93 12.88 3.19 12.81

1.63 12.92Da5-Dev1 2.51 12.8 13.31 13.22 2.65 12.67 2.79 12.97
Da5-Dev2 2.99 12.84 12.71 13.21 3.68 12.96 3.06 12.9
Da5-Dev3 3.34 12.76 12.35 13.44 3.77 13.06 3.38 12.83

Da6-Dev0 3.11 12.91 13.58 13.47 3.02 12.87 3.51 12.7

2.04 13.01Da6-Dev1 2.92 12.89 13.57 13.6 3.35 12.91 3.46 12.94
Da6-Dev2 2.99 12.94 12.85 13.37 4.14 13.16 3.31 12.92
Da6-Dev3 3.79 13.01 13.19 13.33 4.31 13.04 3.94 12.84

aThe first subcolumn under each method is the validation loss and the second subcolumn is the test loss.
bA fully connected neural network is applied as the baseline.
cThe loss was calculated using RMSE, each term of the loss function was inverse-transformed back to the original data
scale by the standard scaler.
dDa#-Dev#, first digit indicates the size of data used for training , the second digit indicates the applied standard deviation
for the generator. For example, Da4-Dev2 indicates that 4 × 10, 000 data is used for training process and σ = 2 × 0.2 is
used for the generator.
eThe bold value indicates the best performance among the methods using the same-size dataset.
fThe loss was calculated using RMSE, each term of the loss function was inverse-transformed back to the original data
scale by the standard scaler.

among all the proposed methods and achieved a loss around
0.22 Nm, while the baseline method achieved 0.14 Nm. For ID,
the analytical model, which uses the mass properties estimated
from CAD, performed the worst with an RMSE of 0.4082 Nm.

In solving the IK task of the Fetch robotic manipulator, the
proposed methods achieved similar performance as the baseline.
DualGANs outperformed all the other proposed methods and
achieved a total loss of 0.91 while the baseline methods gained
the least loss of 0.89. In solving the ID task of the Fetch robotic
manipulator, almost all trials of the proposed methods performed

better in the test evaluation than the baseline method. GANs
gained the best performance with a loss of 12.67 while the
baseline achieved 12.92 as the best value. The analytical model
achieved an RMSE of 40.00.

It can also be noted that the baseline method has a much
lower loss in the validation dataset than the proposed methods
even if it performs similarly or worse in the test dataset. This
‘‘hidden’’ overfitting in a limited dataset may fail to generalize the
neural network in the overall actuation space while the proposed
methods are robust in such situations. Standard deviation also
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plays an important role in the training performance, and it can be
seen that in the ID task of the Fetch robotic manipulator, a ‘‘suit-
able’’ standard deviation gained the best performance compared
to the same methods with either too large or too small standard
deviation.

The results from the experimental validation show that the
proposed algorithms can handle the estimation of the uncertainty
components present in the system when compared to existing
analytical methods. This could be attributed to the fact that unlike
existing methods the proposed techniques were trained on real-
world datasets instead of using a simplified analytical model
such as physics-based simulations. In comparison to simplified
analytical data, real-world datasets provide rich information in-
cluding the effects of friction, damping, actuator properties, and
mass-inertia effects of different links in the most realistic man-
ner. This enables the trained neural network to perform precise
predictions.

The experimental results also show that the proposed tech-
nique works well in cases of limited dataset compared to the
widely used fully connected neural network, and even when the
manipulator is used to track previously unseen trajectories. This
validates the global approximation capabilities of the proposed
techniques. The proposed technique was trained using trajecto-
ries generated randomly over the entire task space, making all
points equally probable in the training dataset. This along with
the sample generator and the generator-discriminator frame-
works enables neural network training over the neighborhood of
natural data while avoiding overfitting on the limited collected
data. Together these features effectively extend the prediction
capability of the proposed techniques over the entire task space.

5. Conclusion

In this paper, we have introduced a series of modified Genera-
tive Adversarial Networks for solving the inverse kinematics and
dynamics of robots using real-world experimental data. Existing
research has focused on learning the uncertainty along with a
simplified analytical model or predicting the hindsight analytic
model, which could then be used as ground truth. However,
existing techniques do not allow for global estimation of the
underlying model of the system. Moreover, they require extensive
training datasets to perform accurate modeling, which is often
time consuming.

The proposed neural network techniques apply generator and
discriminator architectures to address the above mentioned lim-
itations. Using the generator and discriminator frameworks, the
proposed methods are able to perform better than state-of-the-
art techniques in cases where there is insufficient data. We eval-
uated the proposed methods on a MICO robotic manipulator and
a Fetch robotic manipulator with different-size training dataset.
The experimental results show that the proposed method is able
to solve the inverse kinematics and dynamics problems with
the desired degree of accuracy. Also, the selection of different
standard deviations for the generator was also studied in the
training process. A ‘‘correctly’’ selected standard deviation will
help the neural network achieve a lower loss in the performance
and avoid overfitting.

The techniques proposed in this work open new ways for
solving the inverse kinematic and the inverse dynamics problems
for high dimensional nonlinear systems with a limited dataset.
Future work in this domain aims at applying the proposed tech-
niques to learn models for complicated robotic systems with
different types of input data. This includes applications such
as system identification techniques for animal locomotion such
as that of lizards or bats based on joint tracking images. The
proposed techniques also open up interesting venues for research

in the domain of neural network design, such as the development
of capsule based networks with dynamic routing. In comparison
to existing architectures, this allows for handling local entry
identification such as static or dynamic constraints.
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