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Abstract: This paper set out to investigate the usefulness of solving collision avoidance problems
with the help of deep reinforcement learning in an unknown environment, especially in compact
spaces, such as a narrow corridor. This research aims to determine whether a deep reinforcement
learning-based collision avoidance method is superior to the traditional methods, such as potential
field-based methods and dynamic window approach. Besides, the proposed obstacle avoidance
method was developed as one of the capabilities to enable each robot in a novel robotic system,
namely the Self-reconfigurable and Transformable Omni-Directional Robotic Modules (STORM),
to navigate intelligently and safely in an unknown environment. A well-conceived hardware and
software architecture with features that enable further expansion and parallel development designed
for the ongoing STORM projects is also presented in this work. A virtual STORM module with
skid-steer kinematics was simulated in Gazebo to reduce the gap between the simulations and the
real-world implementations. Moreover, comparisons among multiple training runs of the neural
networks with different parameters related to balance the exploitation and exploration during the
training process, as well as tests and experiments conducted in both simulation and real-world,
are presented in detail. Directions for future research are also provided in the paper.

Keywords: collision avoidance; neural network; deep reinforcement learning

1. Introduction

Artificial Intelligence (AI) has been a topic of great interest in a wide range of fields,
such as gaming, computer vision, and robotics. One of the impressive applications is
the AI-based AlphaZero [1] that has superhuman performance in the games of chess
and shogi, as well as Go, with the help of Deep Reinforcement Learning (DRL) based
techniques. DRL [2,3] is a combination of reinforcement learning and deep learning
techniques. It allows an agent to learn to behave in an environment based on feedback
rewards or punishments. A neural network is used to approximate the associated value
function, which allows the proposed architecture to evaluate the possible actions based
on an inherent understanding of the situations. This enables an agent to learn from
scratch by itself without experiences and supervisions from human beings, which may
offer possibilities for the agent to discover superhuman behaviors and achieve better
performances. The exciting achievements of DRL-based programs in gaming encourage
more and more researchers to investigate real-world applications. For example, a DRL
algorithm based on off-policy training of deep Q-functions successfully learned a complex
door opening skill on real robotic manipulators [4].

A vast majority of current research in robotics is concerned with mobile robots [5,6],
especially mobile robot navigation. This is another popular area where DRL was applied
to seek valuable solutions [7,8]. Our interests focus on investigating whether a DRL-based
solution is beneficial to improve the robot behaviors when solving one of the autonomous
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navigation problems, namely obstacle avoidance, in addition to analyzing and compar-
ing some state-of-the-art autonomous navigation methods, especially obstacle avoidance
approaches theoretically and experimentally.

In this work, we solve the obstacle avoidance problem using DRL-based methods
to address the shortcomings of existing state-of-the-art local path planning techniques.
Specifically, the proposed work aims to improve the robot’s performance in problematic
situations [9], as mentioned below.

It is a common problem with existing state-of-the-art methods to trigger the obstacle
avoidance maneuver within a specific distance, commonly referred to as the triggering
distance. When an obstacle or multiple obstacles are detected within that distance, the local
path planners will send commands to the robot to steer away from the obstacles. It should
be noted that the triggering distance is different from the maximum range of the sensor.
This is illustrated in Figure 1. As described in the figure, the robot has information about
the environment within the maximum range of the sensor, denoted in red, but chooses to
act solely based on the information available within the triggering distance, denoted in
blue. As a result, this information waste leads to an improper inference of the nature of the
environment, and the robot will choose to steer to direct A and B with equal probability.
However, only direction A is the correct option.
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The major limitation of the proposed technique is the fact that to train the neural
network architecture, a large dataset is required. To address this issue, a simulated en-
vironment was developed in Gazebo [10] to collect the data. Several different features,
especially scenarios with compact spaces and problematic situations, as mentioned above,
were constructed in the simulation environments to train the neural networks.

Another objective of the proposed DRL-based obstacle avoidance technique is to
enable autonomous navigation of the Self-reconfigurable and Transformable Directional
Robotic Modules (STORM) [11–13]. Several related projects [14–16] of the STORM system
were developed in parallel, which increase the requirements of the hardware and software
architecture of STORM. In order to efficiently handle the complexity while allowing for
further expansion and parallel development, the software and electronic architecture of the
STORM system are required to be even more advanced. A well-conceived hardware and
software architecture was developed for STORM, as also detailed in this paper. In addition,
a virtual STORM module with skid-steer kinematics according to the mechanical design of
the locomotion module of STORM was developed in Gazebo in order to reduce the gap
between the simulations and the real-world experiments.

In summary, the major contributions of this paper can be listed as follows: (1) develop-
ing a DRL-based solution to the obstacle avoidance problem, exploring and evaluating the
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influence of selecting different critical parameters for the training process; (2) addressing
the compact spaces and problematic scenarios when solving the obstacle avoidance prob-
lem and comparing the performances with the traditional dynamic window-based method
in simulation; (3) developing a virtual STORM module in Gazebo in order to reduce the
gap between the simulations and the real-world experiments; (4) development of electronic
and software architectures for STROM to enable the parallel design of different controllers
for the STORM system.

2. Related Works
2.1. Autonomous Navigation

In this section, we review and compare the state-of-the-art autonomous navigation
techniques theoretically as background. Several common drawbacks of the previous
methods are pointed out with the intention of developing and improving our methods to
get rid of these issues.

In general, the autonomous navigation problem can be subdivided into several sub-
tasks, including localization, path planning, and obstacle avoidance. A global path planner
is commonly used to plan an optimal collision-free path from the start to the goal position
for the robot in advance, provided prior knowledge of the environment is available in the
form of a map. Some of the commonly used global path planners include the A* searching
algorithm [17] or the visibility graph method [18]. Despite the ability to find optimal paths,
global path planning methods suffer from a major drawback. Prior knowledge of the
environment is always required for global path planning. As a result, the derived path
will not be reliable if the map changes or if the map is not accurate enough. To this extent,
local path planners were developed for mobile robots to avoid obstacles based on real-time
sensory information. Methods such as potential fields (PF) [19] and dynamic window
approach [20] can be utilized to avoid collisions in a dynamic environment.

Although potential fields based methods are straightforward and capable of over-
coming unknown scenarios, they have some significant drawbacks [21]: the robot can get
trapped in a local minima away from the goal, the robot may not be able to find a path
between two closely spaced obstacles, and oscillations can occur when the robot attempts to
move through narrow passages. To overcome these shortcomings, modified versions of the
potential fields method were developed, such as the Virtual Force Field (VFF) method [21]
and Virtual Field Histogram (VFH) [22]. Although the above-mentioned drawbacks are
handled by these methods, deciding upon the direction of motion can be difficult for
these methods, particularly in some problematic scenarios [9]. Some fuzzy logic-based
methods [23,24] also exist to teach a mobile robot the proper action based on sensory
information to improve obstacle avoidance performance. However, the selection of the
linguistic variables used for the fuzzy rules and the definition of membership functions
can become complicated in the presence of a large number of sensor readings, such as in
the case of data emanating from a LIDAR.

For instance, in the case of existing algorithms such as the Vector Field Histogram
(VFH) based path planner [9] that rely solely on information available within the triggering
distance, the two openings, A and B, are equally appropriate. This leads to a problematic
scenario if the planner chooses to steer in the direction of B, as mentioned in Section 1.
The robot will crash into the wall unless it stops or moves backward. This problem was
previously pointed out by Ulrich and Borenstein in [9] when they developed the VFH*
method. They designed a hybrid path planner by combining the A* search algorithm
and VFH to prevent failure in the above-mentioned scenario. However, it requires prior
knowledge of the environment to improve the performance of the local planner.

A better solution would be to create a technique where the robot uses all the infor-
mation available within the maximum sensing range to infer more about the nature of
the environment. This in turn, creates an additional layer of autonomy where the robot
attempts to understand the environment before making obstacle avoidance decisions,
thereby resulting in reliable, intelligent behaviors. As soon as the robot sees the wall near
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B, the obstacle avoidance technique should infer that the robot is in a corridor and should
turn towards A.

As such, we explore the use of DRL for developing an intelligent obstacle avoidance
approach. This enables the proposed algorithm to develop an inherent ability to understand
the environment based on sensor readings and thereby make the right decision without
error from preprocessing of the sensory data and waste of the information. To emphasize
the advantages of the proposed DRL based method, its features are compared with state-
of-the-art classic methods, as shown in Table 1.

Table 1. Comparison among path planning approach.

Methods Strategy Prior Knowledge Real-Time Capability Comments

A* [17]

Search-based approach Yes Offline planning

Avoids expanding
paths that are

already expensive

Dijkstra’s Algorithm
[25]

Explores all the
possible path and take

more time

Greedy Best First
Search [26]

Finds out the optimal
path fast but not

always work

Probabilistic roadmap
(PRM) [27]

Sample-based planning Yes Offline planning

Selects a random node
from the C-space and
performs multi-query

RRT [28]

Selects a random node
from the C-space and
incrementally adds

new node

PF [19]

Potential field-based
approach

No

Online planning

Has several drawbacks:
local minima,

no passage of narrow
path, oscillations in

narrow passages

VFF [21]

Overcomes the local
minima problem,
but the other two

shortcomings still exist

VFH [9], VFH+ [29]
Overcomes the

drawbacks,
but problematic
scenarios exist

VFH* [9] Yes

Overcomes the
problematic scenarios

but relies on
information from

a map

FLC [23] Fuzzy logic-based
method No Online planning

Generates various
decisions according

to different
sensory information

Proposed Approach DRL-based approach No Online planning

Generates optimal
decisions from
a well-trained

neural network.
Complex scenarios can
be overcome as long as

the robot has
sufficient experiences

during training
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2.2. Deep Reinforcement Learning in Robotics

More and more current research attempts to adopt various DRL methods to solve real-
world problems in robotics. Reducing the training time and improving the sample efficiency
is of great importance when training on physical robots. For instance, deep deterministic
policy gradient (DDPG) and normalized advantage functions (NAF) were suitable for real
robotic systems. An asynchronous DRL with a parallel NAF algorithm, demonstrated
in [4], was proved to achieve sample-efficient training on a cluster of robotic manipulators.
Another work [30] related to robotic manipulation employ model-free DRL with a soft
Q-learning (SQL) based method that leverages the compositionality of maximum entropy
policies in both simulated and real-world tasks is more sample efficient than prior model-
free DRL methods.

Various DRL methods were employed and extended to solve autonomous navigation
problems. For example, actor-critic model whose policy including a function of the goal
and the current state to generalize across targets and scenes was adopted to solve the
problem of navigating a room to find a target object using [7]. Autonomous navigation
of unmanned aerial vehicles was formulated as a partially observable Markov decision
process in [31] with a solution based on recurrent deterministic policy gradient algorithm
(RDPG). A motion planner for mapless navigation of mobile robots was trained through
an asynchronous DDPG to improve the effectiveness of the training process [8].

3. Collision Avoidance Approach

In our proposed approach, the collision avoidance problem is defined as a Markov
Decision Process which can be solved using DRL. Three different DRL methods were
compared in our previous work [32] as the basis for selecting the DRL approach in this
work for further analysis and investigation. With regards to obstacle avoidance appli-
cations, as compared to existing methods such as the potential field method [19] and
dynamic window approach (DWA) [20], DRL does not require a complex mathematical
model. Instead, an efficient model has been derived automatically by updating the pa-
rameters of the neural network based on the observations obtained from the sensors as
inputs. In addition, this method allows the robot to operate efficiently without a precise
map or a high-resolution sensor. The setup of the simulated training environment and
implementation details of the DRL-based obstacle avoidance approach is presented in the
following subsections.

3.1. Problem Formulation

In order to plan a collision-free path, the robot needs to extract information from
the environment using sensor data and thereby generate commands to avoid obstacles.
The relationship between the observations from the sensors and action can be represented
by a mathematical model. In general, the problem can be formulated as

(vt, ωt) = f (Ot) (1)

where vt, ωt and Ot are the linear velocity, angular velocity, and the observation from the
sensor at each time step.

3.2. DRL Methods

DRL is a combination of reinforcement learning and deep learning techniques. Re-
inforcement learning (RL) aims to enable an agent to learn the optimal behavior when
interacting with an environment by means of trial-and-error search and delayed reward.
The main elements of an RL problem include an agent, environment states, policy, re-
ward function, and a value function [33]. DRL draws more and more research interests
nowadays. Several efficient DRL methods were discussed and analyzed in this work to
investigate the feasibility and capability of using DRL to solve collision avoidance problems.
Deep Q-network (DQN) [34] is a well-known method tested on several Atari games. It is
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proved that this method is capable of evaluating a fixed policy using a nonlinear function
approximator. The DQN can be represented according to the following equation:

Li(θi) = (r + γ(max
a′

(
Q
(
s′, a′; θ−i

))
−Q(s, a; θi))

2 (2)

where Li(θi) is a sequence of loss functions for updating the neural network,
r + γ(max

a′

(
Q
(
s′, a′; θ−i

))
is the target for iteration i, and θ−i are the weights from the

previous iteration. To improve the computational efficiency, minibatch updates are applied
to samples of experience, randomly selected from the memory.

A major drawback of DQN is defined as overestimation. To improve the results,
researchers introduced Double Deep Q-networks (DDQN). The main difference between
DDQN and DQN is that DDQN has two sets of weights θi and θ−i . At each time step,
the action is from the neural network with weights θi, but the evaluation of that action is
from the target network with weights θ−i .

Another attempt to improve the trainings includes extending the basic DRL methods
using Prioritized Experience Replay (PER). This method samples the experience based on
the priority of each experience in the replay memory. The training efficiency was proved to
be increased with PER, but more parameters were introduced that increased the complexity
of tuning the model.

An evaluation of the three DRL methods was performed experimentally in our previ-
ous work [32]. DQN, DDQN, and DDQN with PER were applied successively to a virtual
Turtlebot running in a simulation environment developed in Gazebo [10]. The average
Q-values and accumulated rewards were analyzed and demonstrated in Figures 2 and 3.
Firstly, the average Q-values of DQN and DDQN were compared, and the curves (Figure 2)
show that the Q-values of DQN were higher in the beginning, but the values dropped due
to overestimation. Besides, the learning process with DDQN is more stable. To decide if
the PER is suitable for the proposed method, the DDQN based algorithm was extended.
The comparison between the DDQN with PER and the original DDQN based method,
as shown in Figure 3, indicated that the reward of DDQN with PER converged faster than
the original DDQN but achieved a lower value in the end. Therefore, our obstacle avoidance
method was developed based on DDQN due to the results and tuning complexity.
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3.3. Collision Avoidance with DRL

In the proposed approach, a neural network is utilized as the nonlinear function
approximator to estimate the action-value function, which enhances the reinforcement
learning process to a DRL problem.

The collision avoidance problem was defined as an MDP, represented by the tuple
〈S, A, P, R, γ〉, where the possible states s form the state space, S (s ∈ S), A is an action
space and contains the possible actions a (a ∈ A), P is the state transition model, R is the
reward function, and γ is the discount factor. A neural network with two hidden layers is
used to estimate the action-value function Q(s, a; θ) with weights.

To train the neural network, large-scale interaction data representing the transition
(st, at, st+1, rt+1) is needed. A simulation environment with a virtual STORM prototype
was developed to acquire the data and train the neural network. At each time step t,
the virtual robot sends the current state st to the neural network as the input. The output is
the value of each action in the current state. The virtual robot is then made to choose an
action according to the decaying ε-greedy policy. The value of ε decreases from 1 with a
decay rate β, as given by,

εk+1 = β× εk (3)

where k is the epoch. ε will stop decaying when it reaches 0.05 and remain fixed. After per-
forming the chosen action at, the robot transitions into the new state st+1 and receives a
reward signal rt+1. These transitions are recorded for updating the neural network.

3.4. Implementation Details

In our proposed approach, the state space S is formed based on the observations
from the LIDAR, and at each time step, the states are equal to the observation (st = Ot).
The action space A consists of 11 possible actions ai = (v, ωm) with the same linear velocity
v but different angular velocities ωm = −0.8 + 0.16×m(m = 0, 1, 2, · · · 10).

The state transition model P is not required in the proposed approach, and the imme-
diate reward at each time step is assigned based upon the following equation,

rt+1 =

{
5 (without collision)
−1000 (collision)

(4)

when the robot experiences a collision, it receives a reward of−1000. The robot was trained
for 3000 epochs. Once the time step reaches the maximum value or the robot crashes into
the wall, the simulation resets with the robot at a random position, and a new epoch starts.

The neural network was implemented using Keras with Tensorflow as the backend.
The inputs of the network being the preprocessed laser data, which represents the current
state of the environment. Two hidden layers, each with 300 neurons, were used in the
network with ReLU activation function. The outputs are the Q-values of all 11 actions.
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To update the weights of the neural network, a mini-batch gradient descent was performed
on the loss function,

L(θ) =
1

2n

n

∑
i=1

(yi −Q(si, ai; θ))2 (5)

where yi is the current target outputs of the action-value function, and n is the size of the
mini-batch. To avoid overestimation, the target yi was updated as,

yi = ri+1 + γQ(si+1, max
a

(Q(si+1, a; θ); θ−)) (6)

where ri+1 is the immediate reward after taking action ai, and γ is the discount factor.
Another neural network Q′(s, a; θ−) is initialized with random weights θ−. This allows the
action a with the maximum value to be chosen from the neural network Q′, while the value
of a is decided in the target network. This in turn prevents overestimation of the action. A
similar approach was used by H. van Hasselt, A. Guez, and D. Silver in [35]. The proposed
approach is summarized in Algorithm 1.

Algorithm 1. Pseudo Code of the Proposed Obstacle Avoidance Method Implemented in
Gazebo Simulator.

1. Initialize the Gazebo simulator;
Initialize the memory D and the Q-network with random weight θ;
Initialize the target Q-network with random weights θ−

2: for episode = 1, k do
3: Put the visual robot at a random position in the 3D world;

Get the first state s1
4: for t = 1,T do
5: With probability ε select a random action at
6: Otherwise, select at = max

a
(Q(s, a; θi))

7: Take action at; get reward rt+1 and state st+1
8: Store transition (st, at, st+1, rt+1) in D
9: Sample random mini-batch of transitions (si, ai, si+1, ri+1)
10: if ri+1 = −1000 then
11: yi = ri+1
12: else
13: yi = ri+1 + γQ(si+1, max

a
(Q(si+1, a; θ); θ−))

14: end if
15: Calculate θ by performing mini-batch gradient descent on the

Mini-batch of loss L(θi) = (yi −Q(s, a; θi))
2

16: Replace the target network parameters θ− ← θ every N step
17: end for
18: end for

4. Robot Platform Description

This section provides detailed information about the robot platform. It is a locomotion
module that belongs to a robotic system named Self-configurable and Transformable Omni-
Directional Robotic Modules (STORM) [13,36]. A virtual STORM module was developed
according to the mechanical design of the locomotion module, as described in Section 4.1.
The electronic system and the software architecture designed for further extension of the
ongoing research STORM are presented in Sections 4.2 and 4.3, respectively.

4.1. Mechanical System

Multi-directional mobility was taken into consideration when designing the mechani-
cal system to improve the spatial alignment capabilities, thereby improving autonomous
docking capabilities [12]. As such, the locomotion module essentially consists of two
tracked units, two-wheeled units, and a vertical translational mechanism (VTM) that
toggles between the two modes of locomotion, as shown in Figure 4.

The wheeled units can be translated down to enable them, allowing for higher speed
and better performance in position control. The tracked units can be engaged by retracting
the wheeled units to allow for better traction while operating in an unstructured environ-
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ment. Since the different modes are aligned perpendicular to each other, switching between
the modes allows the robot to move sideways as well. Furthermore, the vertical translation
structure housing the wheeled unit provides vertical mobility as well. Having varied
modes of locomotion provides a wide variety of capabilities to the locomotion module,
including translation along X, Y, and Z axes. This improves the spatial alignment capabili-
ties of STORM for autonomous docking applications. The main specifications [11] of the
prototype are summarized in Table 2.
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Table 2. Robot parameters.

Characteristic Parameters

Outer dimensions 410 × 305 × 120 mm3

Vertical translation 50 mm
Robot mass 8.40 kg

TU mass 2 × 2.81 kg
WU mass 2 × 0.76 kg

VTU 0.73 kg

4.2. Electronic System

The electronic system is designed to enable the robot to perform the diverse tasks.
The electronic hardware architecture is presented in Figure 5.
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The internal electronic system can be divided into three subsystems: control, sensing,
and actuation. All the components built-in or mounted on the robot platform are shown
inside the dashed line (Figure 5), classified as the internal hardware group. A worksta-
tion computer and a wireless router belong to the external hardware group. Optionally,
an Operator Control Unit (OCU), such as a joystick, is able to control the motions of the
robot module via Bluetooth. The core of the mobile robot is the control system which
contains a single-board computer (ODROID-XU4) and two microcontrollers (TEENSY 2.0).
The ODROID-XU4 has an ARM CPU and 2 GB of high-speed RAM. The TEENSY 2.0 micro-
controller has an 8-Bit AVR Processor running at 16 MHz (ATMEGA32U4). The electronic
control system is in charge of sending commands, acquiring sensor data and communicat-
ing with the external hardware or other robots if required. The main components of the
actuation system are five motors. Each tracked unit is actuated by a high-torque Maxon
EC motor with an encoder. Maxon Flat EC motors with hall sensors drive the wheeled
units. A DC motor is used to drive the VTM to provide vertical mobility. A potentiometer
is attached to monitor the position of the VTM and gives feedback to a PID controller for
precise height control. The sensing system has four ultrasonic sensors, two USB cameras,
a Hokuyo LIDAR, and a 9-axis motion tracking device. The LIDAR is mounted on top of
the VTU to assist with autonomous navigation.

4.3. Software System

A three-layer software architecture is designed to manage different controllers for
various subtasks of the STORM system. These controllers can be developed in parallel
without the complete knowledge of the software architecture, such as the previously
developed autonomous docking controller [16], the path planner [14], and the trajectory
tracking controller [15].

The software architecture is developed in a publish-subscribe pattern based on Robot
Operating System (ROS). As shown in Figure 6, the software architecture consists of three
layers: the actuation layer, the platform layer, and the control layer. This architecture
divides the overall software system into smaller modules. This feature, together with the
publish-subscribe pattern, enables modular design and parallel development.
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The software in the actuation layer is embedded in the microcontroller. The commands
from the higher-level controllers can be published to the command manager in the platform
layer. The command manager converts it into 8-bit unsigned integer array for sending the
enable signal for each of the individual sensors as well as speed information for the motors.
All the components in the actuation layer are programmed as state machines operating on
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the commands from the command manager. They transit between standby and execution
states based on the commands.

Due to the different properties of the various sensors, the software for the sensing
system is separated into the actuation layer and the platform layer. The ultrasonic sensors,
potentiometer, and the 9-axis IMU are interfaced with the microcontrollers. The raw
data from these sensors are published to the status reporter together with the feedback
information about the motors. The cameras, LIDAR, and an optional localization device
named Pozyx [37] are directly connected to the single-board computer. The software
processes to interface these sensors are in the platform layer. Each sensor publishes out a
topic for acquiring and sending the raw data. The high-level controllers can then subscribe
to the status reporter and the sensor topics for any required information.

All the software in the platform layer and the actuation layer is designed to be reusable.
The implementation of the control layer represents the extensible nature of the software
architecture. The architecture allows for different control methods to be developed in
parallel. Each method can choose the required information provided by the status reporter
and the sensor processes running on the single-board computer. It is possible that some
high-level controllers may require more computing power than what is provided by the
single-board computer. For instance, the neural network in the proposed obstacle avoidance
approach cannot be implemented on the single-board computer. Instead, it is implemented
on a workstation, and the platform layer is made to subscribe to the topics published by
the workstation through ROS.

5. Simulations and Results

To train and test the neural network, various simulation environments and a virual
STORM locomotion module were developed in Gazebo simulator [10]. It is critical to map
the obtained linear and angular velocities from the high-level commands to the velocities
of each track or wheel of the STORM locomotion module in the simulation as well as
in the real-world experiments. As such, a skid-steering kinematic model of the STORM
locomotion module was developed and presented in the following subsection.

5.1. Kinematic Model of the Virtual STORM Module

The locomotion module can be regarded as a tracked mobile robot when the VTU is
lifted. When the VTU is lowered, the robot is considered to be in wheeled mobile robot
mode. However, in both cases, it operates as a skid-steer mobile robot, as shown in Figure
7. The kinematics for this system can be represented as follows:

(vL, vR) = f (v, ω) (7)

where v = (vx, vy) is the linear velocity of the robot; vx and vy are the components of v
along the X and Y axes, respectively; ω is the angular velocity of the robot; vL and vR are
the linear velocity of the left and right tracked or wheeled mobility unit with respect to the
local frame of reference.
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Any planar movement of a rigid body can be regarded as a rotation about a single
point, defined as the instantaneous center of rotation (ICR). The skid-steer mobile robot
during a turning maneuver can be considered as a rigid body that is rotating about its ICR.
The ICRs of the left and right treads are different from the ICR of the body of the robot.
According to the Kennedy’s Theorem, all three ICRs have to be aligned in a straight line [38].
In Figure 7, C1 = (xc1, yc1) is the ICR of the STORM locomotion module, and C2 = (xc2, yc2)
and C3 = (xc3, yc3) are the ICRs of the left and right wheeled or tracked units, respectively.

Based on the calculated ICRs, the linear velocities of the robot can be calculated
as follows:

vL = −|xc2|ω + vy
vR = |xc3|ω + vy

(8)

In the above model, the local x coordinates xc2 and xc3 were estimated via experiments
in simulation. Known values of vL and vR were given to the robot and the resulting ω and
vy. Using Equation (8), the average values of xc2 and xc3 were calculated from the recorded
data. The estimated values are as follows: in the tracked mobility mode, |xc2| = 0.29 m
and |xc3| = 0.3 m, in the wheeled mobility mode, |xc2| = 0.14 m, and |xc2| = 0.15 m.

With the knowledge of the kinematic relations of the locomotion module, the virtual
STORM module with a 2D laser scanner was simulated in Gazebo, as shown in Figure 8.
The LIDAR takes 512 measurements in a 270◦ span. A set of 50 range measurements are
selected evenly from the sensor. The distance measurements are preprocessed to fall within
a range of 0.00 m to 5.00 m.
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The sensor data and state information were obtained from the simulator and then
provided to the neural network as inputs. The commands to the virtual robot were sent
based on the outputs of the neural network. Communication was done through publishing
and subscribing to ROS topics.

The proposed collision avoidance method is general in the sense that it can be applied
to both the tracked mobility mode and wheeled mobility mode of the locomotion mod-
ule. The trainings and experiments in both the simulation environments and real-world
implementation were conducted with the robot in the tracked mode.

5.2. Training Parameter Selection and Analysis

The proposed approach uses ε-greedy policy to choose the appropriate action. This pol-
icy allows the selection of a random action with probability ε. Otherwise, the robot will
select the action with the highest value from the neural network. At the beginning of the
training, ε is set to 1, and the robot always selects a random action to acquire varied training
data for updating the neural network. This is defined as the exploration stage. However,
the robot cannot always select a random action, as it also needs to exploit the actions.
With a probability of (1− ε), the robot will follow the output of the current neural network
and choose the action with the highest value in the current state. If the robot can receive a
similar reward to what it gets in the recorded transitions, the neural network is understood
as well-trained. If not, the neural network needs more data to exploit. The decay rate β
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of the probability ε is used for balancing the exploration and the exploitation. A lower β
means that the robot chooses fewer random actions when it meets the same environment
state. It relies more on the previous experiences it had already obtained. The value of β
will stop decaying after it reaches 0.05, which means that the robot will end up choosing a
random action with a probability of 5%. To demonstrate the inferences of the parameters β
and ε, as well as to evaluate the performances of the virtual STORM, a test of the virtual
robot was set up in the simulation as follows:

1. The training process was performed three times in Map 2, as shown in Figure 9b,
with the decay rate β set to 0.997, 0.998, and 0.999, respectively. Each neural network
was trained for 3000 epochs for the following reasons: (a) All the three tests reach
the lowest value of ε to choose a random action after 3000 epochs, for example,
when β = 0.999, ε reaches 0.05 at log0.999 0.05 = 2994 epochs. (b) The current work did
not include the improvement of the training efficiency. Training the neural network
for 3000 epochs keeps the entire test within an acceptable training time, while at the
same time ensuring that reasonable results can be obtained according to our previous
experiences when training the neural network in [32].

2. The three neural networks were applied to the virtual STORM successively to navigate
the test map with similar features in Map 2, as shown in Figure 10, for five minutes.
The metric for evaluating the performance of the neural networks is chosen to be the
number of collisions undergone within five minutes of simulation.
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5.3. Comparison with State-of-the-Art Method

To demonstrate the advantages of the proposed DRL based planner, it was compared
with the DWA local planner [30] in the virtual world, as shown in Figure 9a. There are
mainly two reasons why this map was developed. The first one is to serve as the testbed
for comparing the proposed method with the dynamic window-based method. The second
one is to address the problem state in the introduction (Figure 1) by adding features in each
corner of the map, which aims to demonstrate that the proposed method has the ability to
avoid the problem mentioned in the introduction section.
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The proposed method allows the robot to avoid obstacles based on the information
from the sensor directly. In contrast, the DWA local planner is based on a dynamic window
approach. Besides the data from the laser sensor, a cost map, generated according to odom-
etry information, is required for the DWA planner to predict the safe motion. The feasibility
of the path from the DWA local planner relies very much on the precision of the provided
costmap. This is especially true in the case when the robot is navigating through narrow
passageways. Consequently, the drift in odometer data may cause collisions under the
DWA local planner. As such, the proposed method is superior to the DWA planner since it
only relies on the sensor data as input.

5.4. Simulation Results

The results of the simulation are summarized and analyzed in this section. Figure 11
shows the training results to compare the performances of the neural network with different
decay rates.

From the results, it can be observed that with a lower value of β in Equation (3),
the neural network tended to get higher rewards fast. However, the rewards obtained
during the training with a low value of β were not stable. This is because the robot
chose an action with the highest Q-value according to the current neural network with
a high probability. Nevertheless, this action was overestimated in the beginning due
to insufficient experiences acquired at that time. The Q-value of that action decreased
with more exploitations. A higher value of β caused the robot to explore more actions
at first. This allowed the robot to take different actions when it met the same situation
to determine which one was better. The reward curves show that the learning process
with the highest βwas slow but stably increased. It should be pointed out that the robot
cannot achieve the highest score by navigating the training map for one round without any
collisions, as shown in the results, because it still had the learning capabilities by selecting a
random action with a probability of 5%. However, after training, the robot with each neural
network was able to navigate the training map without collisions when it took action with
the highest values according to the outputs of that neural network without the probabilities
of choosing random actions. In conclusion, a higher decaying rate of the probability of
choosing a random action causes the robot to learn fast, but the value of the actions as the
outputs of the neural networks was not stable. One can decrease the value of β to evaluate
if the actions that are already learned are proper or not. One can decrease the value of β to
obtain more stable results on the account of longer training time.

The performance of the robot with different neural networks over a duration of
five minutes in the test map differs from the test map shown in Table 3. It proved that the
DRL-based obstacle avoidance method has the potential to deal with similar situations
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it had already learned. Further tests of the robustness of the proposed controller were
conducted in the real world.
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Table 3. Performance of obstacle avoidance approach.

Decay Rate β Number of Collisions in 5 min

0.999 0
0.997 1
0.995 2

Figure 12 shows a sequence of frames captured from the simulated environment with
a virtual STORM locomotion module under the DRL-based obstacle avoidance controller.
For the simulated case, the virtual robot maneuvers through the narrow corridor-like maze
successfully without any collisions. In comparison, another sequence of frames captured
from the simulation is shown in Figure 13 with the locomotion module under the DWA
local planner. The trajectories of the robot under the action of the two different planners
are compared in Figure 14. As seen from Figure 13b, the robot goes out of the maze
due to the lack of environmental information in order to plan a global path in advance.
After a recovery behavior, the robot comes up with a new plan and goes in the correct
direction, as shown in Figure 13c,d. It should be noted that at one of the corners of the
maze, as shown in Figure 13e,f, the robot almost bumped into the wall and failed to come
up with a reliable local path. The reason is that the costmap generated from the odometer
data was not precise at that specific time step, as shown in Figure 14b. This causes the robot
to spin around and collect more information and thereby plan a new path. In conclusion,
the proposed DRL-based method is capable of planning a proper motion for the mobile
robot solely based on the data collected from the laser sensor directly. This in turn reduces
the inaccuracy caused by other processes, such as costmap generation.
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Figure 13. STORM locomotion module with the DWA local planner initialized at the (a) starting
position goes out of the maze due to the lack of environmental information. In a recovery behavior,
the robot comes up with a new plan and goes in the correct direction, as shown (b–d). At one of the
corners of the maze, as shown in (e–g), the robot almost bumped into the wall and failed to come up
with a reliable local path. It finally goes to the (h) goal position.
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5.5. Real-World Implementation

The obstacle avoidance controller for the STORM prototype was embedded in the
control layer. The neural network trained with β = 0.999 was selected as it offered the
best performance. As mentioned before, the trained neural network was made to run on
a workstation since it was beyond the computational power of the onboard single board
computer. The neural network generated the command ai = (v, ωm) with an update rate
of 10 Hz. These commands were subscribed by the command manager on board STORM
locomotion module and converted into the proper form for the actuation layer.

As mentioned before, the neural network found optimal actions based on the sensor
observations in the simulated world, but the map was the same as that used for training.
In order to validate the ability of the robot to travel without collisions, not only in the
same map as the training case but also in environments with different features, three maps
different from the training scenarios were built to test the robot. One of the maps had a
circular feature with different diameters as compared to the simulated training environment.
Figure 15 shows the three test maps and the trajectories followed by the robot when
traveling through the maps. The robot traveled in each of the three maps for five minutes
without collision. This proved that the proposed approach could handle situations different
from the training scenario provided in the 3D simulation.
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6. Conclusions and Future Work

The DRL-based method shows the potential to improve the performance of the robot
when avoiding obstacles in some highly occupied environments and problematic scenarios.
The proposed DRL architecture was trained inside a simulated Gazebo environment to
allow for sufficient data collection over varied features without any damage to the real
robot. The results from the simulations show that more exploration in training leads to
stably increased rewards with slow training speed. The trained DRL architecture was
tested in real-world scenarios with the STORM locomotion module. The experimental
results show that the proposed approach was able to perform well in previously unseen
scenarios that are much different from the training scenario, thereby proving a generalized
nature of the trained architecture.

Future work will incorporate a specified goal position without a prior map, along with
obstacle avoidance capabilities. The maps developed in the Gazebo simulator aimed
to emphasize the compact spaced environment and problematic scenarios. The train-
ing environment should be more complex and involve various features to enable robust
performances of the robot. Further training and investigations will include a multi-stage
training with a shared memory set and maps of gradually increased difficulty, in contrast
to learning directly from the complex environments. Besides, the training efficiency will
be taken into consideration when improving the proposed obstacle avoidance methods.
To a larger extent, this work is a step forward in enabling multi-robot exploration and
navigation in unknown environments for the STORM system. As part of future work,
new simulation environments with moving obstacles and uneven terrain will be considered
to enrich the experience of the trained neural network.
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