
robotics

Article

A Collision Avoidance Method Based on Deep
Reinforcement Learning

Shumin Feng 1, Bijo Sebastian 2 and Pinhas Ben-Tzvi 1,*

����������
�������

Citation: Feng, S.; Sebastian, B.;

Ben-Tzvi, P. A Collision Avoidance

Method Based on Deep

Reinforcement Learning. Robotics

2021, 10, 73. https://doi.org/

10.3390/robotics10020073

Received: 14 April 2021

Accepted: 14 May 2021

Published: 19 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Robotics and Mechatronics Lab, Department of Mechanical Engineering, Virginia Polytechnic Institute and
State University, Blacksburg, VA 24061, USA; shumin@vt.edu

2 Torc Robotics, Blacksburg, VA 24060, USA; bijo7@vt.edu
* Correspondence: bentzvi@vt.edu; Tel.: +1-(540)-231-6938

Abstract: This paper set out to investigate the usefulness of solving collision avoidance problems
with the help of deep reinforcement learning in an unknown environment, especially in compact
spaces, such as a narrow corridor. This research aims to determine whether a deep reinforcement
learning-based collision avoidance method is superior to the traditional methods, such as potential
field-based methods and dynamic window approach. Besides, the proposed obstacle avoidance
method was developed as one of the capabilities to enable each robot in a novel robotic system,
namely the Self-reconfigurable and Transformable Omni-Directional Robotic Modules (STORM),
to navigate intelligently and safely in an unknown environment. A well-conceived hardware and
software architecture with features that enable further expansion and parallel development designed
for the ongoing STORM projects is also presented in this work. A virtual STORM module with
skid-steer kinematics was simulated in Gazebo to reduce the gap between the simulations and the
real-world implementations. Moreover, comparisons among multiple training runs of the neural
networks with different parameters related to balance the exploitation and exploration during the
training process, as well as tests and experiments conducted in both simulation and real-world,
are presented in detail. Directions for future research are also provided in the paper.

Keywords: collision avoidance; neural network; deep reinforcement learning

1. Introduction

Artificial Intelligence (AI) has been a topic of great interest in a wide range of fields,
such as gaming, computer vision, and robotics. One of the impressive applications is
the AI-based AlphaZero [1] that has superhuman performance in the games of chess
and shogi, as well as Go, with the help of Deep Reinforcement Learning (DRL) based
techniques. DRL [2,3] is a combination of reinforcement learning and deep learning
techniques. It allows an agent to learn to behave in an environment based on feedback
rewards or punishments. A neural network is used to approximate the associated value
function, which allows the proposed architecture to evaluate the possible actions based
on an inherent understanding of the situations. This enables an agent to learn from
scratch by itself without experiences and supervisions from human beings, which may
offer possibilities for the agent to discover superhuman behaviors and achieve better
performances. The exciting achievements of DRL-based programs in gaming encourage
more and more researchers to investigate real-world applications. For example, a DRL
algorithm based on off-policy training of deep Q-functions successfully learned a complex
door opening skill on real robotic manipulators [4].

A vast majority of current research in robotics is concerned with mobile robots [5,6],
especially mobile robot navigation. This is another popular area where DRL was applied
to seek valuable solutions [7,8]. Our interests focus on investigating whether a DRL-based
solution is beneficial to improve the robot behaviors when solving one of the autonomous

Robotics 2021, 10, 73. https://doi.org/10.3390/robotics10020073 https://www.mdpi.com/journal/robotics

https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0002-9452-482X
https://www.mdpi.com/article/10.3390/robotics10020073?type=check_update&version=1
https://doi.org/10.3390/robotics10020073
https://doi.org/10.3390/robotics10020073
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/robotics10020073
https://www.mdpi.com/journal/robotics

Robotics 2021, 10, 73 2 of 19

navigation problems, namely obstacle avoidance, in addition to analyzing and compar-
ing some state-of-the-art autonomous navigation methods, especially obstacle avoidance
approaches theoretically and experimentally.

In this work, we solve the obstacle avoidance problem using DRL-based methods
to address the shortcomings of existing state-of-the-art local path planning techniques.
Specifically, the proposed work aims to improve the robot’s performance in problematic
situations [9], as mentioned below.

It is a common problem with existing state-of-the-art methods to trigger the obstacle
avoidance maneuver within a specific distance, commonly referred to as the triggering
distance. When an obstacle or multiple obstacles are detected within that distance, the local
path planners will send commands to the robot to steer away from the obstacles. It should
be noted that the triggering distance is different from the maximum range of the sensor.
This is illustrated in Figure 1. As described in the figure, the robot has information about
the environment within the maximum range of the sensor, denoted in red, but chooses to
act solely based on the information available within the triggering distance, denoted in
blue. As a result, this information waste leads to an improper inference of the nature of the
environment, and the robot will choose to steer to direct A and B with equal probability.
However, only direction A is the correct option.

Robotics 2021, 10, x FOR PEER REVIEW 2 of 20

navigation problems, namely obstacle avoidance, in addition to analyzing and comparing
some state-of-the-art autonomous navigation methods, especially obstacle avoidance ap-
proaches theoretically and experimentally.

In this work, we solve the obstacle avoidance problem using DRL-based methods to
address the shortcomings of existing state-of-the-art local path planning techniques. Spe-
cifically, the proposed work aims to improve the robot’s performance in problematic sit-
uations [9], as mentioned below.

It is a common problem with existing state-of-the-art methods to trigger the obstacle
avoidance maneuver within a specific distance, commonly referred to as the triggering
distance. When an obstacle or multiple obstacles are detected within that distance, the
local path planners will send commands to the robot to steer away from the obstacles. It
should be noted that the triggering distance is different from the maximum range of the
sensor. This is illustrated in Figure 1. As described in the figure, the robot has information
about the environment within the maximum range of the sensor, denoted in red, but
chooses to act solely based on the information available within the triggering distance,
denoted in blue. As a result, this information waste leads to an improper inference of the
nature of the environment, and the robot will choose to steer to direct A and B with equal
probability. However, only direction A is the correct option.

Figure 1. Robot in a narrow corridor. The blue circle indicates the trigger distance. Both A and B
are the open areas detected by the autonomous robot at the current time step.

The major limitation of the proposed technique is the fact that to train the neural
network architecture, a large dataset is required. To address this issue, a simulated envi-
ronment was developed in Gazebo [10] to collect the data. Several different features, es-
pecially scenarios with compact spaces and problematic situations, as mentioned above,
were constructed in the simulation environments to train the neural networks.

Another objective of the proposed DRL-based obstacle avoidance technique is to en-
able autonomous navigation of the Self-reconfigurable and Transformable Directional Ro-
botic Modules (STORM) [11–13]. Several related projects [14–16] of the STORM system
were developed in parallel, which increase the requirements of the hardware and software
architecture of STORM. In order to efficiently handle the complexity while allowing for
further expansion and parallel development, the software and electronic architecture of
the STORM system are required to be even more advanced. A well-conceived hardware
and software architecture was developed for STORM, as also detailed in this paper. In
addition, a virtual STORM module with skid-steer kinematics according to the mechanical
design of the locomotion module of STORM was developed in Gazebo in order to reduce
the gap between the simulations and the real-world experiments.

In summary, the major contributions of this paper can be listed as follows: (1) devel-
oping a DRL-based solution to the obstacle avoidance problem, exploring and evaluating

Figure 1. Robot in a narrow corridor. The blue circle indicates the trigger distance. Both A and B are
the open areas detected by the autonomous robot at the current time step.

The major limitation of the proposed technique is the fact that to train the neural
network architecture, a large dataset is required. To address this issue, a simulated en-
vironment was developed in Gazebo [10] to collect the data. Several different features,
especially scenarios with compact spaces and problematic situations, as mentioned above,
were constructed in the simulation environments to train the neural networks.

Another objective of the proposed DRL-based obstacle avoidance technique is to
enable autonomous navigation of the Self-reconfigurable and Transformable Directional
Robotic Modules (STORM) [11–13]. Several related projects [14–16] of the STORM system
were developed in parallel, which increase the requirements of the hardware and software
architecture of STORM. In order to efficiently handle the complexity while allowing for
further expansion and parallel development, the software and electronic architecture of the
STORM system are required to be even more advanced. A well-conceived hardware and
software architecture was developed for STORM, as also detailed in this paper. In addition,
a virtual STORM module with skid-steer kinematics according to the mechanical design of
the locomotion module of STORM was developed in Gazebo in order to reduce the gap
between the simulations and the real-world experiments.

In summary, the major contributions of this paper can be listed as follows: (1) develop-
ing a DRL-based solution to the obstacle avoidance problem, exploring and evaluating the

Robotics 2021, 10, 73 3 of 19

influence of selecting different critical parameters for the training process; (2) addressing
the compact spaces and problematic scenarios when solving the obstacle avoidance prob-
lem and comparing the performances with the traditional dynamic window-based method
in simulation; (3) developing a virtual STORM module in Gazebo in order to reduce the
gap between the simulations and the real-world experiments; (4) development of electronic
and software architectures for STROM to enable the parallel design of different controllers
for the STORM system.

2. Related Works
2.1. Autonomous Navigation

In this section, we review and compare the state-of-the-art autonomous navigation
techniques theoretically as background. Several common drawbacks of the previous
methods are pointed out with the intention of developing and improving our methods to
get rid of these issues.

In general, the autonomous navigation problem can be subdivided into several sub-
tasks, including localization, path planning, and obstacle avoidance. A global path planner
is commonly used to plan an optimal collision-free path from the start to the goal position
for the robot in advance, provided prior knowledge of the environment is available in the
form of a map. Some of the commonly used global path planners include the A* searching
algorithm [17] or the visibility graph method [18]. Despite the ability to find optimal paths,
global path planning methods suffer from a major drawback. Prior knowledge of the
environment is always required for global path planning. As a result, the derived path
will not be reliable if the map changes or if the map is not accurate enough. To this extent,
local path planners were developed for mobile robots to avoid obstacles based on real-time
sensory information. Methods such as potential fields (PF) [19] and dynamic window
approach [20] can be utilized to avoid collisions in a dynamic environment.

Although potential fields based methods are straightforward and capable of over-
coming unknown scenarios, they have some significant drawbacks [21]: the robot can get
trapped in a local minima away from the goal, the robot may not be able to find a path
between two closely spaced obstacles, and oscillations can occur when the robot attempts to
move through narrow passages. To overcome these shortcomings, modified versions of the
potential fields method were developed, such as the Virtual Force Field (VFF) method [21]
and Virtual Field Histogram (VFH) [22]. Although the above-mentioned drawbacks are
handled by these methods, deciding upon the direction of motion can be difficult for
these methods, particularly in some problematic scenarios [9]. Some fuzzy logic-based
methods [23,24] also exist to teach a mobile robot the proper action based on sensory
information to improve obstacle avoidance performance. However, the selection of the
linguistic variables used for the fuzzy rules and the definition of membership functions
can become complicated in the presence of a large number of sensor readings, such as in
the case of data emanating from a LIDAR.

For instance, in the case of existing algorithms such as the Vector Field Histogram
(VFH) based path planner [9] that rely solely on information available within the triggering
distance, the two openings, A and B, are equally appropriate. This leads to a problematic
scenario if the planner chooses to steer in the direction of B, as mentioned in Section 1.
The robot will crash into the wall unless it stops or moves backward. This problem was
previously pointed out by Ulrich and Borenstein in [9] when they developed the VFH*
method. They designed a hybrid path planner by combining the A* search algorithm
and VFH to prevent failure in the above-mentioned scenario. However, it requires prior
knowledge of the environment to improve the performance of the local planner.

A better solution would be to create a technique where the robot uses all the infor-
mation available within the maximum sensing range to infer more about the nature of
the environment. This in turn, creates an additional layer of autonomy where the robot
attempts to understand the environment before making obstacle avoidance decisions,
thereby resulting in reliable, intelligent behaviors. As soon as the robot sees the wall near

Robotics 2021, 10, 73 4 of 19

B, the obstacle avoidance technique should infer that the robot is in a corridor and should
turn towards A.

As such, we explore the use of DRL for developing an intelligent obstacle avoidance
approach. This enables the proposed algorithm to develop an inherent ability to understand
the environment based on sensor readings and thereby make the right decision without
error from preprocessing of the sensory data and waste of the information. To emphasize
the advantages of the proposed DRL based method, its features are compared with state-
of-the-art classic methods, as shown in Table 1.

Table 1. Comparison among path planning approach.

Methods Strategy Prior Knowledge Real-Time Capability Comments

A* [17]

Search-based approach Yes Offline planning

Avoids expanding
paths that are

already expensive

Dijkstra’s Algorithm
[25]

Explores all the
possible path and take

more time

Greedy Best First
Search [26]

Finds out the optimal
path fast but not

always work

Probabilistic roadmap
(PRM) [27]

Sample-based planning Yes Offline planning

Selects a random node
from the C-space and
performs multi-query

RRT [28]

Selects a random node
from the C-space and
incrementally adds

new node

PF [19]

Potential field-based
approach

No

Online planning

Has several drawbacks:
local minima,

no passage of narrow
path, oscillations in

narrow passages

VFF [21]

Overcomes the local
minima problem,
but the other two

shortcomings still exist

VFH [9], VFH+ [29]
Overcomes the

drawbacks,
but problematic
scenarios exist

VFH* [9] Yes

Overcomes the
problematic scenarios

but relies on
information from

a map

FLC [23] Fuzzy logic-based
method No Online planning

Generates various
decisions according

to different
sensory information

Proposed Approach DRL-based approach No Online planning

Generates optimal
decisions from
a well-trained

neural network.
Complex scenarios can
be overcome as long as

the robot has
sufficient experiences

during training

Robotics 2021, 10, 73 5 of 19

2.2. Deep Reinforcement Learning in Robotics

More and more current research attempts to adopt various DRL methods to solve real-
world problems in robotics. Reducing the training time and improving the sample efficiency
is of great importance when training on physical robots. For instance, deep deterministic
policy gradient (DDPG) and normalized advantage functions (NAF) were suitable for real
robotic systems. An asynchronous DRL with a parallel NAF algorithm, demonstrated
in [4], was proved to achieve sample-efficient training on a cluster of robotic manipulators.
Another work [30] related to robotic manipulation employ model-free DRL with a soft
Q-learning (SQL) based method that leverages the compositionality of maximum entropy
policies in both simulated and real-world tasks is more sample efficient than prior model-
free DRL methods.

Various DRL methods were employed and extended to solve autonomous navigation
problems. For example, actor-critic model whose policy including a function of the goal
and the current state to generalize across targets and scenes was adopted to solve the
problem of navigating a room to find a target object using [7]. Autonomous navigation
of unmanned aerial vehicles was formulated as a partially observable Markov decision
process in [31] with a solution based on recurrent deterministic policy gradient algorithm
(RDPG). A motion planner for mapless navigation of mobile robots was trained through
an asynchronous DDPG to improve the effectiveness of the training process [8].

3. Collision Avoidance Approach

In our proposed approach, the collision avoidance problem is defined as a Markov
Decision Process which can be solved using DRL. Three different DRL methods were
compared in our previous work [32] as the basis for selecting the DRL approach in this
work for further analysis and investigation. With regards to obstacle avoidance appli-
cations, as compared to existing methods such as the potential field method [19] and
dynamic window approach (DWA) [20], DRL does not require a complex mathematical
model. Instead, an efficient model has been derived automatically by updating the pa-
rameters of the neural network based on the observations obtained from the sensors as
inputs. In addition, this method allows the robot to operate efficiently without a precise
map or a high-resolution sensor. The setup of the simulated training environment and
implementation details of the DRL-based obstacle avoidance approach is presented in the
following subsections.

3.1. Problem Formulation

In order to plan a collision-free path, the robot needs to extract information from
the environment using sensor data and thereby generate commands to avoid obstacles.
The relationship between the observations from the sensors and action can be represented
by a mathematical model. In general, the problem can be formulated as

(vt, ωt) = f (Ot) (1)

where vt, ωt and Ot are the linear velocity, angular velocity, and the observation from the
sensor at each time step.

3.2. DRL Methods

DRL is a combination of reinforcement learning and deep learning techniques. Re-
inforcement learning (RL) aims to enable an agent to learn the optimal behavior when
interacting with an environment by means of trial-and-error search and delayed reward.
The main elements of an RL problem include an agent, environment states, policy, re-
ward function, and a value function [33]. DRL draws more and more research interests
nowadays. Several efficient DRL methods were discussed and analyzed in this work to
investigate the feasibility and capability of using DRL to solve collision avoidance problems.
Deep Q-network (DQN) [34] is a well-known method tested on several Atari games. It is

Robotics 2021, 10, 73 6 of 19

proved that this method is capable of evaluating a fixed policy using a nonlinear function
approximator. The DQN can be represented according to the following equation:

Li(θi) = (r + γ(max
a′

(
Q
(
s′, a′; θ−i

))
−Q(s, a; θi))

2 (2)

where Li(θi) is a sequence of loss functions for updating the neural network,
r + γ(max

a′

(
Q
(
s′, a′; θ−i

))
is the target for iteration i, and θ−i are the weights from the

previous iteration. To improve the computational efficiency, minibatch updates are applied
to samples of experience, randomly selected from the memory.

A major drawback of DQN is defined as overestimation. To improve the results,
researchers introduced Double Deep Q-networks (DDQN). The main difference between
DDQN and DQN is that DDQN has two sets of weights θi and θ−i . At each time step,
the action is from the neural network with weights θi, but the evaluation of that action is
from the target network with weights θ−i .

Another attempt to improve the trainings includes extending the basic DRL methods
using Prioritized Experience Replay (PER). This method samples the experience based on
the priority of each experience in the replay memory. The training efficiency was proved to
be increased with PER, but more parameters were introduced that increased the complexity
of tuning the model.

An evaluation of the three DRL methods was performed experimentally in our previ-
ous work [32]. DQN, DDQN, and DDQN with PER were applied successively to a virtual
Turtlebot running in a simulation environment developed in Gazebo [10]. The average
Q-values and accumulated rewards were analyzed and demonstrated in Figures 2 and 3.
Firstly, the average Q-values of DQN and DDQN were compared, and the curves (Figure 2)
show that the Q-values of DQN were higher in the beginning, but the values dropped due
to overestimation. Besides, the learning process with DDQN is more stable. To decide if
the PER is suitable for the proposed method, the DDQN based algorithm was extended.
The comparison between the DDQN with PER and the original DDQN based method,
as shown in Figure 3, indicated that the reward of DDQN with PER converged faster than
the original DDQN but achieved a lower value in the end. Therefore, our obstacle avoidance
method was developed based on DDQN due to the results and tuning complexity.

Robotics 2021, 10, x FOR PEER REVIEW 6 of 20

proved that this method is capable of evaluating a fixed policy using a nonlinear function
approximator. The DQN can be represented according to the following equation:

()() 2
'

() ((m 'ax (, ;) ';) , ii i ia
r Q sL Q s aa θγ θθ − −+= (2)

where ()i iL θ is a sequence of loss functions for updating the neural network,

()()'
 'a , ';(m x ia
r Q s aγ θ −+ is the target for iteration i , and iθ − are the weights from the

previous iteration. To improve the computational efficiency, minibatch updates are ap-
plied to samples of experience, randomly selected from the memory.

A major drawback of DQN is defined as overestimation. To improve the results, re-
searchers introduced Double Deep Q-networks (DDQN). The main difference between
DDQN and DQN is that DDQN has two sets of weights iθ and iθ − . At each time step,
the action is from the neural network with weights iθ , but the evaluation of that action
is from the target network with weights iθ − .

Another attempt to improve the trainings includes extending the basic DRL methods
using Prioritized Experience Replay (PER). This method samples the experience based on
the priority of each experience in the replay memory. The training efficiency was proved
to be increased with PER, but more parameters were introduced that increased the com-
plexity of tuning the model.

An evaluation of the three DRL methods was performed experimentally in our pre-
vious work [32]. DQN, DDQN, and DDQN with PER were applied successively to a vir-
tual Turtlebot running in a simulation environment developed in Gazebo [10]. The aver-
age Q-values and accumulated rewards were analyzed and demonstrated in Figures 2 and
3. Firstly, the average Q-values of DQN and DDQN were compared, and the curves (Fig-
ure 2) show that the Q-values of DQN were higher in the beginning, but the values
dropped due to overestimation. Besides, the learning process with DDQN is more stable.
To decide if the PER is suitable for the proposed method, the DDQN based algorithm was
extended. The comparison between the DDQN with PER and the original DDQN based
method, as shown in Figure 3, indicated that the reward of DDQN with PER converged
faster than the original DDQN but achieved a lower value in the end. Therefore, our ob-
stacle avoidance method was developed based on DDQN due to the results and tuning
complexity.

Figure 2. Average q-values estimated by DQN, DDQN [32]. Figure 2. Average q-values estimated by DQN, DDQN [32].

Robotics 2021, 10, 73 7 of 19

Robotics 2021, 10, x FOR PEER REVIEW 7 of 20

Figure 3. Rewards from the training with Turtlebot employed DDQN and DDQN with PER, re-
spectively [32].

3.3. Collision Avoidance with DRL
In the proposed approach, a neural network is utilized as the nonlinear function ap-

proximator to estimate the action-value function, which enhances the reinforcement learn-
ing process to a DRL problem.

The collision avoidance problem was defined as an MDP, represented by the tuple
, , , ,S A P R , where the possible states s form the state space, S (s S), A is an ac-

tion space and contains the possible actions a (a A), P is the state transition model,
R is the reward function, and is the discount factor. A neural network with two hid-

den layers is used to estimate the action-value function (, ;)Q s a with weights.
To train the neural network, large-scale interaction data representing the transition

 1 1, , ,t t t ts a s r is needed. A simulation environment with a virtual STORM prototype
was developed to acquire the data and train the neural network. At each time step t , the
virtual robot sends the current state ts to the neural network as the input. The output is
the value of each action in the current state. The virtual robot is then made to choose an
action according to the decaying ε-greedy policy. The value of ε decreases from 1 with a
decay rate β, as given by,

1k k (3)

where k is the epoch. will stop decaying when it reaches 0.05 and remain fixed. After
performing the chosen action ta , the robot transitions into the new state 1ts and re-
ceives a reward signal 1tr . These transitions are recorded for updating the neural net-
work.

3.4. Implementation Details
In our proposed approach, the state space S is formed based on the observations

from the LIDAR, and at each time step, the states are equal to the observation (t ts O).
The action space A consists of 11 possible actions (,)i ma v with the same linear ve-
locity v but different angular velocities 0.8 0.16 (0,1,2, 10)m m m .

The state transition model P is not required in the proposed approach, and the im-
mediate reward at each time step is assigned based upon the following equation,

1
5 (without collision)

1000 (collision)tr

 (4)

Figure 3. Rewards from the training with Turtlebot employed DDQN and DDQN with PER, respec-
tively [32].

3.3. Collision Avoidance with DRL

In the proposed approach, a neural network is utilized as the nonlinear function
approximator to estimate the action-value function, which enhances the reinforcement
learning process to a DRL problem.

The collision avoidance problem was defined as an MDP, represented by the tuple
〈S, A, P, R, γ〉, where the possible states s form the state space, S (s ∈ S), A is an action
space and contains the possible actions a (a ∈ A), P is the state transition model, R is the
reward function, and γ is the discount factor. A neural network with two hidden layers is
used to estimate the action-value function Q(s, a; θ) with weights.

To train the neural network, large-scale interaction data representing the transition
(st, at, st+1, rt+1) is needed. A simulation environment with a virtual STORM prototype
was developed to acquire the data and train the neural network. At each time step t,
the virtual robot sends the current state st to the neural network as the input. The output is
the value of each action in the current state. The virtual robot is then made to choose an
action according to the decaying ε-greedy policy. The value of ε decreases from 1 with a
decay rate β, as given by,

εk+1 = β× εk (3)

where k is the epoch. ε will stop decaying when it reaches 0.05 and remain fixed. After per-
forming the chosen action at, the robot transitions into the new state st+1 and receives a
reward signal rt+1. These transitions are recorded for updating the neural network.

3.4. Implementation Details

In our proposed approach, the state space S is formed based on the observations
from the LIDAR, and at each time step, the states are equal to the observation (st = Ot).
The action space A consists of 11 possible actions ai = (v, ωm) with the same linear velocity
v but different angular velocities ωm = −0.8 + 0.16×m(m = 0, 1, 2, · · · 10).

The state transition model P is not required in the proposed approach, and the imme-
diate reward at each time step is assigned based upon the following equation,

rt+1 =

{
5 (without collision)
−1000 (collision)

(4)

when the robot experiences a collision, it receives a reward of−1000. The robot was trained
for 3000 epochs. Once the time step reaches the maximum value or the robot crashes into
the wall, the simulation resets with the robot at a random position, and a new epoch starts.

The neural network was implemented using Keras with Tensorflow as the backend.
The inputs of the network being the preprocessed laser data, which represents the current
state of the environment. Two hidden layers, each with 300 neurons, were used in the
network with ReLU activation function. The outputs are the Q-values of all 11 actions.

Robotics 2021, 10, 73 8 of 19

To update the weights of the neural network, a mini-batch gradient descent was performed
on the loss function,

L(θ) =
1

2n

n

∑
i=1

(yi −Q(si, ai; θ))2 (5)

where yi is the current target outputs of the action-value function, and n is the size of the
mini-batch. To avoid overestimation, the target yi was updated as,

yi = ri+1 + γQ(si+1, max
a

(Q(si+1, a; θ); θ−)) (6)

where ri+1 is the immediate reward after taking action ai, and γ is the discount factor.
Another neural network Q′(s, a; θ−) is initialized with random weights θ−. This allows the
action a with the maximum value to be chosen from the neural network Q′, while the value
of a is decided in the target network. This in turn prevents overestimation of the action. A
similar approach was used by H. van Hasselt, A. Guez, and D. Silver in [35]. The proposed
approach is summarized in Algorithm 1.

Algorithm 1. Pseudo Code of the Proposed Obstacle Avoidance Method Implemented in
Gazebo Simulator.

1. Initialize the Gazebo simulator;
Initialize the memory D and the Q-network with random weight θ;
Initialize the target Q-network with random weights θ−

2: for episode = 1, k do
3: Put the visual robot at a random position in the 3D world;

Get the first state s1
4: for t = 1,T do
5: With probability ε select a random action at
6: Otherwise, select at = max

a
(Q(s, a; θi))

7: Take action at; get reward rt+1 and state st+1
8: Store transition (st, at, st+1, rt+1) in D
9: Sample random mini-batch of transitions (si, ai, si+1, ri+1)
10: if ri+1 = −1000 then
11: yi = ri+1
12: else
13: yi = ri+1 + γQ(si+1, max

a
(Q(si+1, a; θ); θ−))

14: end if
15: Calculate θ by performing mini-batch gradient descent on the

Mini-batch of loss L(θi) = (yi −Q(s, a; θi))
2

16: Replace the target network parameters θ− ← θ every N step
17: end for
18: end for

4. Robot Platform Description

This section provides detailed information about the robot platform. It is a locomotion
module that belongs to a robotic system named Self-configurable and Transformable Omni-
Directional Robotic Modules (STORM) [13,36]. A virtual STORM module was developed
according to the mechanical design of the locomotion module, as described in Section 4.1.
The electronic system and the software architecture designed for further extension of the
ongoing research STORM are presented in Sections 4.2 and 4.3, respectively.

4.1. Mechanical System

Multi-directional mobility was taken into consideration when designing the mechani-
cal system to improve the spatial alignment capabilities, thereby improving autonomous
docking capabilities [12]. As such, the locomotion module essentially consists of two
tracked units, two-wheeled units, and a vertical translational mechanism (VTM) that
toggles between the two modes of locomotion, as shown in Figure 4.

The wheeled units can be translated down to enable them, allowing for higher speed
and better performance in position control. The tracked units can be engaged by retracting
the wheeled units to allow for better traction while operating in an unstructured environ-

Robotics 2021, 10, 73 9 of 19

ment. Since the different modes are aligned perpendicular to each other, switching between
the modes allows the robot to move sideways as well. Furthermore, the vertical translation
structure housing the wheeled unit provides vertical mobility as well. Having varied
modes of locomotion provides a wide variety of capabilities to the locomotion module,
including translation along X, Y, and Z axes. This improves the spatial alignment capabili-
ties of STORM for autonomous docking applications. The main specifications [11] of the
prototype are summarized in Table 2.

Robotics 2021, 10, x FOR PEER REVIEW 9 of 20

15: Calculate θ by performing mini-batch gradient descent on the
 Mini-batch of loss 2(, ;))() (i iQL y ai sθ θ= −

16: Replace the target network parameters θ θ− ← every N step

17: end for

18: end for

4. Robot Platform Description
This section provides detailed information about the robot platform. It is a locomo-

tion module that belongs to a robotic system named Self-configurable and Transformable
Omni-Directional Robotic Modules (STORM) [13,36]. A virtual STORM module was de-
veloped according to the mechanical design of the locomotion module, as described in
Section 4.1. The electronic system and the software architecture designed for further ex-
tension of the ongoing research STORM are presented in Section 4.2 and Section 4.3, re-
spectively.

4.1. Mechanical System
Multi-directional mobility was taken into consideration when designing the mechan-

ical system to improve the spatial alignment capabilities, thereby improving autonomous
docking capabilities [12]. As such, the locomotion module essentially consists of two
tracked units, two-wheeled units, and a vertical translational mechanism (VTM) that tog-
gles between the two modes of locomotion, as shown in Figure 4.

Figure 4. The architecture of the STORM locomotion module. The tracked unit, wheeled unit, and the vertical translational
mechanism are indicated in the figure. (a) Tracked mobility mode. (b) Wheeled mobility. Note that the tracks are lifted by
the vertical translational mechanism. (c) Various sensors that available on STORM.

The wheeled units can be translated down to enable them, allowing for higher speed
and better performance in position control. The tracked units can be engaged by retracting
the wheeled units to allow for better traction while operating in an unstructured environ-
ment. Since the different modes are aligned perpendicular to each other, switching be-
tween the modes allows the robot to move sideways as well. Furthermore, the vertical
translation structure housing the wheeled unit provides vertical mobility as well. Having
varied modes of locomotion provides a wide variety of capabilities to the locomotion
module, including translation along X, Y, and Z axes. This improves the spatial alignment
capabilities of STORM for autonomous docking applications. The main specifications [11]
of the prototype are summarized in Table 2.

Table 2. Robot parameters.

Characteristic Parameters
Outer dimensions 410 × 305 × 120 mm3

Vertical translation 50 mm

Figure 4. The architecture of the STORM locomotion module. The tracked unit, wheeled unit, and the vertical translational
mechanism are indicated in the figure. (a) Tracked mobility mode. (b) Wheeled mobility. Note that the tracks are lifted by
the vertical translational mechanism. (c) Various sensors that available on STORM.

Table 2. Robot parameters.

Characteristic Parameters

Outer dimensions 410 × 305 × 120 mm3

Vertical translation 50 mm
Robot mass 8.40 kg

TU mass 2 × 2.81 kg
WU mass 2 × 0.76 kg

VTU 0.73 kg

4.2. Electronic System

The electronic system is designed to enable the robot to perform the diverse tasks.
The electronic hardware architecture is presented in Figure 5.

Robotics 2021, 10, x FOR PEER REVIEW 10 of 20

Robot mass 8.40 kg
TU mass 2 × 2.81 kg
WU mass 2 × 0.76 kg

VTU 0.73 kg

4.2. Electronic System
The electronic system is designed to enable the robot to perform the diverse tasks.

The electronic hardware architecture is presented in Figure 5.

Figure 5. The electrical architecture of STORM.

The internal electronic system can be divided into three subsystems: control, sensing,
and actuation. All the components built-in or mounted on the robot platform are shown
inside the dashed line (Figure 5), classified as the internal hardware group. A workstation
computer and a wireless router belong to the external hardware group. Optionally, an
Operator Control Unit (OCU), such as a joystick, is able to control the motions of the robot
module via Bluetooth. The core of the mobile robot is the control system which contains a
single-board computer (ODROID-XU4) and two microcontrollers (TEENSY 2.0). The
ODROID-XU4 has an ARM CPU and 2 GB of high-speed RAM. The TEENSY 2.0 micro-
controller has an 8-Bit AVR Processor running at 16 MHz (ATMEGA32U4). The electronic
control system is in charge of sending commands, acquiring sensor data and communi-
cating with the external hardware or other robots if required. The main components of the
actuation system are five motors. Each tracked unit is actuated by a high-torque Maxon
EC motor with an encoder. Maxon Flat EC motors with hall sensors drive the wheeled
units. A DC motor is used to drive the VTM to provide vertical mobility. A potentiometer
is attached to monitor the position of the VTM and gives feedback to a PID controller for
precise height control. The sensing system has four ultrasonic sensors, two USB cameras,
a Hokuyo LIDAR, and a 9-axis motion tracking device. The LIDAR is mounted on top of
the VTU to assist with autonomous navigation.

4.3. Software System
A three-layer software architecture is designed to manage different controllers for

various subtasks of the STORM system. These controllers can be developed in parallel
without the complete knowledge of the software architecture, such as the previously de-
veloped autonomous docking controller [16], the path planner [14], and the trajectory
tracking controller [15].

Figure 5. The electrical architecture of STORM.

Robotics 2021, 10, 73 10 of 19

The internal electronic system can be divided into three subsystems: control, sensing,
and actuation. All the components built-in or mounted on the robot platform are shown
inside the dashed line (Figure 5), classified as the internal hardware group. A worksta-
tion computer and a wireless router belong to the external hardware group. Optionally,
an Operator Control Unit (OCU), such as a joystick, is able to control the motions of the
robot module via Bluetooth. The core of the mobile robot is the control system which
contains a single-board computer (ODROID-XU4) and two microcontrollers (TEENSY 2.0).
The ODROID-XU4 has an ARM CPU and 2 GB of high-speed RAM. The TEENSY 2.0 micro-
controller has an 8-Bit AVR Processor running at 16 MHz (ATMEGA32U4). The electronic
control system is in charge of sending commands, acquiring sensor data and communicat-
ing with the external hardware or other robots if required. The main components of the
actuation system are five motors. Each tracked unit is actuated by a high-torque Maxon
EC motor with an encoder. Maxon Flat EC motors with hall sensors drive the wheeled
units. A DC motor is used to drive the VTM to provide vertical mobility. A potentiometer
is attached to monitor the position of the VTM and gives feedback to a PID controller for
precise height control. The sensing system has four ultrasonic sensors, two USB cameras,
a Hokuyo LIDAR, and a 9-axis motion tracking device. The LIDAR is mounted on top of
the VTU to assist with autonomous navigation.

4.3. Software System

A three-layer software architecture is designed to manage different controllers for
various subtasks of the STORM system. These controllers can be developed in parallel
without the complete knowledge of the software architecture, such as the previously
developed autonomous docking controller [16], the path planner [14], and the trajectory
tracking controller [15].

The software architecture is developed in a publish-subscribe pattern based on Robot
Operating System (ROS). As shown in Figure 6, the software architecture consists of three
layers: the actuation layer, the platform layer, and the control layer. This architecture
divides the overall software system into smaller modules. This feature, together with the
publish-subscribe pattern, enables modular design and parallel development.

Robotics 2021, 10, x FOR PEER REVIEW 11 of 20

The software architecture is developed in a publish-subscribe pattern based on Robot
Operating System (ROS). As shown in Figure 6, the software architecture consists of three
layers: the actuation layer, the platform layer, and the control layer. This architecture di-
vides the overall software system into smaller modules. This feature, together with the
publish-subscribe pattern, enables modular design and parallel development.

Figure 6. Software architecture: The various programs are divided into three different layers.

The software in the actuation layer is embedded in the microcontroller. The com-
mands from the higher-level controllers can be published to the command manager in the
platform layer. The command manager converts it into 8-bit unsigned integer array for
sending the enable signal for each of the individual sensors as well as speed information
for the motors. All the components in the actuation layer are programmed as state ma-
chines operating on the commands from the command manager. They transit between
standby and execution states based on the commands.

Due to the different properties of the various sensors, the software for the sensing
system is separated into the actuation layer and the platform layer. The ultrasonic sensors,
potentiometer, and the 9-axis IMU are interfaced with the microcontrollers. The raw data
from these sensors are published to the status reporter together with the feedback infor-
mation about the motors. The cameras, LIDAR, and an optional localization device named
Pozyx [37] are directly connected to the single-board computer. The software processes to
interface these sensors are in the platform layer. Each sensor publishes out a topic for ac-
quiring and sending the raw data. The high-level controllers can then subscribe to the
status reporter and the sensor topics for any required information.

All the software in the platform layer and the actuation layer is designed to be reus-
able. The implementation of the control layer represents the extensible nature of the soft-
ware architecture. The architecture allows for different control methods to be developed
in parallel. Each method can choose the required information provided by the status re-
porter and the sensor processes running on the single-board computer. It is possible that
some high-level controllers may require more computing power than what is provided
by the single-board computer. For instance, the neural network in the proposed obstacle
avoidance approach cannot be implemented on the single-board computer. Instead, it is
implemented on a workstation, and the platform layer is made to subscribe to the topics
published by the workstation through ROS.

5. Simulations and Results
To train and test the neural network, various simulation environments and a virual

STORM locomotion module were developed in Gazebo simulator [10]. It is critical to map
the obtained linear and angular velocities from the high-level commands to the velocities

Figure 6. Software architecture: The various programs are divided into three different layers.

The software in the actuation layer is embedded in the microcontroller. The commands
from the higher-level controllers can be published to the command manager in the platform
layer. The command manager converts it into 8-bit unsigned integer array for sending the
enable signal for each of the individual sensors as well as speed information for the motors.
All the components in the actuation layer are programmed as state machines operating on

Robotics 2021, 10, 73 11 of 19

the commands from the command manager. They transit between standby and execution
states based on the commands.

Due to the different properties of the various sensors, the software for the sensing
system is separated into the actuation layer and the platform layer. The ultrasonic sensors,
potentiometer, and the 9-axis IMU are interfaced with the microcontrollers. The raw
data from these sensors are published to the status reporter together with the feedback
information about the motors. The cameras, LIDAR, and an optional localization device
named Pozyx [37] are directly connected to the single-board computer. The software
processes to interface these sensors are in the platform layer. Each sensor publishes out a
topic for acquiring and sending the raw data. The high-level controllers can then subscribe
to the status reporter and the sensor topics for any required information.

All the software in the platform layer and the actuation layer is designed to be reusable.
The implementation of the control layer represents the extensible nature of the software
architecture. The architecture allows for different control methods to be developed in
parallel. Each method can choose the required information provided by the status reporter
and the sensor processes running on the single-board computer. It is possible that some
high-level controllers may require more computing power than what is provided by the
single-board computer. For instance, the neural network in the proposed obstacle avoidance
approach cannot be implemented on the single-board computer. Instead, it is implemented
on a workstation, and the platform layer is made to subscribe to the topics published by
the workstation through ROS.

5. Simulations and Results

To train and test the neural network, various simulation environments and a virual
STORM locomotion module were developed in Gazebo simulator [10]. It is critical to map
the obtained linear and angular velocities from the high-level commands to the velocities
of each track or wheel of the STORM locomotion module in the simulation as well as
in the real-world experiments. As such, a skid-steering kinematic model of the STORM
locomotion module was developed and presented in the following subsection.

5.1. Kinematic Model of the Virtual STORM Module

The locomotion module can be regarded as a tracked mobile robot when the VTU is
lifted. When the VTU is lowered, the robot is considered to be in wheeled mobile robot
mode. However, in both cases, it operates as a skid-steer mobile robot, as shown in Figure
7. The kinematics for this system can be represented as follows:

(vL, vR) = f (v, ω) (7)

where v = (vx, vy) is the linear velocity of the robot; vx and vy are the components of v
along the X and Y axes, respectively; ω is the angular velocity of the robot; vL and vR are
the linear velocity of the left and right tracked or wheeled mobility unit with respect to the
local frame of reference.

Robotics 2021, 10, x FOR PEER REVIEW 12 of 20

of each track or wheel of the STORM locomotion module in the simulation as well as in
the real-world experiments. As such, a skid-steering kinematic model of the STORM lo-
comotion module was developed and presented in the following subsection.

5.1. Kinematic Model of the Virtual STORM Module
The locomotion module can be regarded as a tracked mobile robot when the VTU is

lifted. When the VTU is lowered, the robot is considered to be in wheeled mobile robot
mode. However, in both cases, it operates as a skid-steer mobile robot, as shown in Figure
7. The kinematics for this system can be represented as follows:

(,) (,)L Rv v f v ω= (7)

where (,)x yv v v= is the linear velocity of the robot; xv and yv are the components of

v along the X and Y axes, respectively; ω is the angular velocity of the robot; Lv and

Rv are the linear velocity of the left and right tracked or wheeled mobility unit with re-
spect to the local frame of reference.

Any planar movement of a rigid body can be regarded as a rotation about a single
point, defined as the instantaneous center of rotation (ICR). The skid-steer mobile robot
during a turning maneuver can be considered as a rigid body that is rotating about its
ICR. The ICRs of the left and right treads are different from the ICR of the body of the
robot. According to the Kennedy’s Theorem, all three ICRs have to be aligned in a straight
line [38]. In Figure 7, 1 11 (,)c cC x y= is the ICR of the STORM locomotion module, and

2 22 (,)c cC x y= and 3 33 (,)c cC x y= are the ICRs of the left and right wheeled or tracked
units, respectively.

Figure 7. Schematic figures of the locomotion module: (a) tracked mobility mode with ICR loca-
tions and (b) wheeled mobility with ICR locations are shown.

Based on the calculated ICRs, the linear velocities of the robot can be calculated as
follows:

2

3

L c y

R c y

v x v

v x v

ω

ω

= − +

= +
 (8)

In the above model, the local x coordinates 2cx and 3cx were estimated via experi-
ments in simulation. Known values of Lv and Rv were given to the robot and the re-
sulting ω and yv . Using Equation (8), the average values of 2cx and 3cx were calcu-
lated from the recorded data. The estimated values are as follows: in the tracked mobility
mode, 2 0.29cx = m and 3 0.3cx = m, in the wheeled mobility mode, 2 0.14cx = m,

and 2 0.15cx = m.

Figure 7. Schematic figures of the locomotion module: (a) tracked mobility mode with ICR locations
and (b) wheeled mobility with ICR locations are shown.

Robotics 2021, 10, 73 12 of 19

Any planar movement of a rigid body can be regarded as a rotation about a single
point, defined as the instantaneous center of rotation (ICR). The skid-steer mobile robot
during a turning maneuver can be considered as a rigid body that is rotating about its ICR.
The ICRs of the left and right treads are different from the ICR of the body of the robot.
According to the Kennedy’s Theorem, all three ICRs have to be aligned in a straight line [38].
In Figure 7, C1 = (xc1, yc1) is the ICR of the STORM locomotion module, and C2 = (xc2, yc2)
and C3 = (xc3, yc3) are the ICRs of the left and right wheeled or tracked units, respectively.

Based on the calculated ICRs, the linear velocities of the robot can be calculated
as follows:

vL = −|xc2|ω + vy
vR = |xc3|ω + vy

(8)

In the above model, the local x coordinates xc2 and xc3 were estimated via experiments
in simulation. Known values of vL and vR were given to the robot and the resulting ω and
vy. Using Equation (8), the average values of xc2 and xc3 were calculated from the recorded
data. The estimated values are as follows: in the tracked mobility mode, |xc2| = 0.29 m
and |xc3| = 0.3 m, in the wheeled mobility mode, |xc2| = 0.14 m, and |xc2| = 0.15 m.

With the knowledge of the kinematic relations of the locomotion module, the virtual
STORM module with a 2D laser scanner was simulated in Gazebo, as shown in Figure 8.
The LIDAR takes 512 measurements in a 270◦ span. A set of 50 range measurements are
selected evenly from the sensor. The distance measurements are preprocessed to fall within
a range of 0.00 m to 5.00 m.

Robotics 2021, 10, x FOR PEER REVIEW 13 of 20

With the knowledge of the kinematic relations of the locomotion module, the virtual
STORM module with a 2D laser scanner was simulated in Gazebo, as shown in Figure 8.
The LIDAR takes 512 measurements in a 270° span. A set of 50 range measurements are
selected evenly from the sensor. The distance measurements are preprocessed to fall
within a range of 0.00 m to 5.00 m.

Figure 8. Simulation environment. A virtual STORM locomotion module with a 2D range sensor
in the simulation environment.

The sensor data and state information were obtained from the simulator and then
provided to the neural network as inputs. The commands to the virtual robot were sent
based on the outputs of the neural network. Communication was done through publish-
ing and subscribing to ROS topics.

The proposed collision avoidance method is general in the sense that it can be applied
to both the tracked mobility mode and wheeled mobility mode of the locomotion module.
The trainings and experiments in both the simulation environments and real-world im-
plementation were conducted with the robot in the tracked mode.

5.2. Training Parameter Selection and Analysis
The proposed approach uses ε-greedy policy to choose the appropriate action. This

policy allows the selection of a random action with probability ε. Otherwise, the robot will
select the action with the highest value from the neural network. At the beginning of the
training, ε is set to 1, and the robot always selects a random action to acquire varied train-
ing data for updating the neural network. This is defined as the exploration stage. How-
ever, the robot cannot always select a random action, as it also needs to exploit the actions.
With a probability of (1 − ε), the robot will follow the output of the current neural net-
work and choose the action with the highest value in the current state. If the robot can
receive a similar reward to what it gets in the recorded transitions, the neural network is
understood as well-trained. If not, the neural network needs more data to exploit. The
decay rate β of the probability ε is used for balancing the exploration and the exploitation.
A lower β means that the robot chooses fewer random actions when it meets the same
environment state. It relies more on the previous experiences it had already obtained. The
value of β will stop decaying after it reaches 0.05, which means that the robot will end up
choosing a random action with a probability of 5%. To demonstrate the inferences of the
parameters β and ε, as well as to evaluate the performances of the virtual STORM, a test
of the virtual robot was set up in the simulation as follows:
1. The training process was performed three times in Map 2, as shown in Figure 9b,

with the decay rate β set to 0.997, 0.998, and 0.999, respectively. Each neural network
was trained for 3000 epochs for the following reasons: (a) All the three tests reach the
lowest value of ε to choose a random action after 3000 epochs, for example, when β
= 0.999, ε reaches 0.05 at 0.999log 0.05 2994= epochs. (b) The current work did not
include the improvement of the training efficiency. Training the neural network for
3000 epochs keeps the entire test within an acceptable training time, while at the same
time ensuring that reasonable results can be obtained according to our previous
experiences when training the neural network in [32].

Figure 8. Simulation environment. A virtual STORM locomotion module with a 2D range sensor in
the simulation environment.

The sensor data and state information were obtained from the simulator and then
provided to the neural network as inputs. The commands to the virtual robot were sent
based on the outputs of the neural network. Communication was done through publishing
and subscribing to ROS topics.

The proposed collision avoidance method is general in the sense that it can be applied
to both the tracked mobility mode and wheeled mobility mode of the locomotion mod-
ule. The trainings and experiments in both the simulation environments and real-world
implementation were conducted with the robot in the tracked mode.

5.2. Training Parameter Selection and Analysis

The proposed approach uses ε-greedy policy to choose the appropriate action. This pol-
icy allows the selection of a random action with probability ε. Otherwise, the robot will
select the action with the highest value from the neural network. At the beginning of the
training, ε is set to 1, and the robot always selects a random action to acquire varied training
data for updating the neural network. This is defined as the exploration stage. However,
the robot cannot always select a random action, as it also needs to exploit the actions.
With a probability of (1− ε), the robot will follow the output of the current neural network
and choose the action with the highest value in the current state. If the robot can receive a
similar reward to what it gets in the recorded transitions, the neural network is understood
as well-trained. If not, the neural network needs more data to exploit. The decay rate β

Robotics 2021, 10, 73 13 of 19

of the probability ε is used for balancing the exploration and the exploitation. A lower β
means that the robot chooses fewer random actions when it meets the same environment
state. It relies more on the previous experiences it had already obtained. The value of β
will stop decaying after it reaches 0.05, which means that the robot will end up choosing a
random action with a probability of 5%. To demonstrate the inferences of the parameters β
and ε, as well as to evaluate the performances of the virtual STORM, a test of the virtual
robot was set up in the simulation as follows:

1. The training process was performed three times in Map 2, as shown in Figure 9b,
with the decay rate β set to 0.997, 0.998, and 0.999, respectively. Each neural network
was trained for 3000 epochs for the following reasons: (a) All the three tests reach
the lowest value of ε to choose a random action after 3000 epochs, for example,
when β = 0.999, ε reaches 0.05 at log0.999 0.05 = 2994 epochs. (b) The current work did
not include the improvement of the training efficiency. Training the neural network
for 3000 epochs keeps the entire test within an acceptable training time, while at the
same time ensuring that reasonable results can be obtained according to our previous
experiences when training the neural network in [32].

2. The three neural networks were applied to the virtual STORM successively to navigate
the test map with similar features in Map 2, as shown in Figure 10, for five minutes.
The metric for evaluating the performance of the neural networks is chosen to be the
number of collisions undergone within five minutes of simulation.

Robotics 2021, 10, x FOR PEER REVIEW 14 of 20

2. The three neural networks were applied to the virtual STORM successively to
navigate the test map with similar features in Map 2, as shown in Figure 10, for five
minutes. The metric for evaluating the performance of the neural networks is chosen
to be the number of collisions undergone within five minutes of simulation.

Figure 9. The training maps. (a) Map 1: a simple corridor-like path with some problematic scenarios. (b) Map 2: a complex
circuit with different environmental features such as straight tracks, 90-degree turns, and acute and obtuse angle corners.

Figure 10. The test map with similar features to that in Map 2.

5.3. Comparison with State-of-the-Art Method
To demonstrate the advantages of the proposed DRL based planner, it was compared

with the DWA local planner [30] in the virtual world, as shown in Figure 9a. There are
mainly two reasons why this map was developed. The first one is to serve as the testbed
for comparing the proposed method with the dynamic window-based method. The sec-
ond one is to address the problem state in the introduction (Figure 1) by adding features
in each corner of the map, which aims to demonstrate that the proposed method has the
ability to avoid the problem mentioned in the introduction section.

The proposed method allows the robot to avoid obstacles based on the information
from the sensor directly. In contrast, the DWA local planner is based on a dynamic win-
dow approach. Besides the data from the laser sensor, a cost map, generated according to

Figure 9. The training maps. (a) Map 1: a simple corridor-like path with some problematic scenarios. (b) Map 2: a complex
circuit with different environmental features such as straight tracks, 90-degree turns, and acute and obtuse angle corners.

5.3. Comparison with State-of-the-Art Method

To demonstrate the advantages of the proposed DRL based planner, it was compared
with the DWA local planner [30] in the virtual world, as shown in Figure 9a. There are
mainly two reasons why this map was developed. The first one is to serve as the testbed
for comparing the proposed method with the dynamic window-based method. The second
one is to address the problem state in the introduction (Figure 1) by adding features in each
corner of the map, which aims to demonstrate that the proposed method has the ability to
avoid the problem mentioned in the introduction section.

Robotics 2021, 10, 73 14 of 19

Robotics 2021, 10, x FOR PEER REVIEW 14 of 20

2. The three neural networks were applied to the virtual STORM successively to
navigate the test map with similar features in Map 2, as shown in Figure 10, for five
minutes. The metric for evaluating the performance of the neural networks is chosen
to be the number of collisions undergone within five minutes of simulation.

Figure 9. The training maps. (a) Map 1: a simple corridor-like path with some problematic scenarios. (b) Map 2: a complex
circuit with different environmental features such as straight tracks, 90-degree turns, and acute and obtuse angle corners.

Figure 10. The test map with similar features to that in Map 2.

5.3. Comparison with State-of-the-Art Method
To demonstrate the advantages of the proposed DRL based planner, it was compared

with the DWA local planner [30] in the virtual world, as shown in Figure 9a. There are
mainly two reasons why this map was developed. The first one is to serve as the testbed
for comparing the proposed method with the dynamic window-based method. The sec-
ond one is to address the problem state in the introduction (Figure 1) by adding features
in each corner of the map, which aims to demonstrate that the proposed method has the
ability to avoid the problem mentioned in the introduction section.

The proposed method allows the robot to avoid obstacles based on the information
from the sensor directly. In contrast, the DWA local planner is based on a dynamic win-
dow approach. Besides the data from the laser sensor, a cost map, generated according to

Figure 10. The test map with similar features to that in Map 2.

The proposed method allows the robot to avoid obstacles based on the information
from the sensor directly. In contrast, the DWA local planner is based on a dynamic window
approach. Besides the data from the laser sensor, a cost map, generated according to odom-
etry information, is required for the DWA planner to predict the safe motion. The feasibility
of the path from the DWA local planner relies very much on the precision of the provided
costmap. This is especially true in the case when the robot is navigating through narrow
passageways. Consequently, the drift in odometer data may cause collisions under the
DWA local planner. As such, the proposed method is superior to the DWA planner since it
only relies on the sensor data as input.

5.4. Simulation Results

The results of the simulation are summarized and analyzed in this section. Figure 11
shows the training results to compare the performances of the neural network with different
decay rates.

From the results, it can be observed that with a lower value of β in Equation (3),
the neural network tended to get higher rewards fast. However, the rewards obtained
during the training with a low value of β were not stable. This is because the robot
chose an action with the highest Q-value according to the current neural network with
a high probability. Nevertheless, this action was overestimated in the beginning due
to insufficient experiences acquired at that time. The Q-value of that action decreased
with more exploitations. A higher value of β caused the robot to explore more actions
at first. This allowed the robot to take different actions when it met the same situation
to determine which one was better. The reward curves show that the learning process
with the highest βwas slow but stably increased. It should be pointed out that the robot
cannot achieve the highest score by navigating the training map for one round without any
collisions, as shown in the results, because it still had the learning capabilities by selecting a
random action with a probability of 5%. However, after training, the robot with each neural
network was able to navigate the training map without collisions when it took action with
the highest values according to the outputs of that neural network without the probabilities
of choosing random actions. In conclusion, a higher decaying rate of the probability of
choosing a random action causes the robot to learn fast, but the value of the actions as the
outputs of the neural networks was not stable. One can decrease the value of β to evaluate
if the actions that are already learned are proper or not. One can decrease the value of β to
obtain more stable results on the account of longer training time.

The performance of the robot with different neural networks over a duration of
five minutes in the test map differs from the test map shown in Table 3. It proved that the
DRL-based obstacle avoidance method has the potential to deal with similar situations

Robotics 2021, 10, 73 15 of 19

it had already learned. Further tests of the robustness of the proposed controller were
conducted in the real world.

Robotics 2021, 10, x FOR PEER REVIEW 15 of 20

odometry information, is required for the DWA planner to predict the safe motion. The
feasibility of the path from the DWA local planner relies very much on the precision of
the provided costmap. This is especially true in the case when the robot is navigating
through narrow passageways. Consequently, the drift in odometer data may cause colli-
sions under the DWA local planner. As such, the proposed method is superior to the DWA
planner since it only relies on the sensor data as input.

5.4. Simulation Results
The results of the simulation are summarized and analyzed in this section. Figure 11

shows the training results to compare the performances of the neural network with dif-
ferent decay rates.

Figure 11. Performance comparisons of the neural network with different decay rates: in the first
three plots, the blue lines indicate the reward values, whereas the red line is the data processed by
a moving average filter with a window size of 500. The blue, red, and green lines in the last plot
stand for the trainings with different decay rates.

From the results, it can be observed that with a lower value of β in Equation (3), the
neural network tended to get higher rewards fast. However, the rewards obtained during
the training with a low value of β were not stable. This is because the robot chose an action
with the highest Q-value according to the current neural network with a high probability.
Nevertheless, this action was overestimated in the beginning due to insufficient experi-
ences acquired at that time. The Q-value of that action decreased with more exploitations.
A higher value of β caused the robot to explore more actions at first. This allowed the
robot to take different actions when it met the same situation to determine which one was
better. The reward curves show that the learning process with the highest β was slow but
stably increased. It should be pointed out that the robot cannot achieve the highest score
by navigating the training map for one round without any collisions, as shown in the re-
sults, because it still had the learning capabilities by selecting a random action with a
probability of 5%. However, after training, the robot with each neural network was able
to navigate the training map without collisions when it took action with the highest values

Figure 11. Performance comparisons of the neural network with different decay rates: in the first
three plots, the blue lines indicate the reward values, whereas the red line is the data processed by a
moving average filter with a window size of 500. The blue, red, and green lines in the last plot stand
for the trainings with different decay rates.

Table 3. Performance of obstacle avoidance approach.

Decay Rate β Number of Collisions in 5 min

0.999 0
0.997 1
0.995 2

Figure 12 shows a sequence of frames captured from the simulated environment with
a virtual STORM locomotion module under the DRL-based obstacle avoidance controller.
For the simulated case, the virtual robot maneuvers through the narrow corridor-like maze
successfully without any collisions. In comparison, another sequence of frames captured
from the simulation is shown in Figure 13 with the locomotion module under the DWA
local planner. The trajectories of the robot under the action of the two different planners
are compared in Figure 14. As seen from Figure 13b, the robot goes out of the maze
due to the lack of environmental information in order to plan a global path in advance.
After a recovery behavior, the robot comes up with a new plan and goes in the correct
direction, as shown in Figure 13c,d. It should be noted that at one of the corners of the
maze, as shown in Figure 13e,f, the robot almost bumped into the wall and failed to come
up with a reliable local path. The reason is that the costmap generated from the odometer
data was not precise at that specific time step, as shown in Figure 14b. This causes the robot
to spin around and collect more information and thereby plan a new path. In conclusion,
the proposed DRL-based method is capable of planning a proper motion for the mobile
robot solely based on the data collected from the laser sensor directly. This in turn reduces
the inaccuracy caused by other processes, such as costmap generation.

Robotics 2021, 10, 73 16 of 19

Robotics 2021, 10, x FOR PEER REVIEW 16 of 20

according to the outputs of that neural network without the probabilities of choosing ran-
dom actions. In conclusion, a higher decaying rate of the probability of choosing a random
action causes the robot to learn fast, but the value of the actions as the outputs of the neural
networks was not stable. One can decrease the value of β to evaluate if the actions that are
already learned are proper or not. One can decrease the value of β to obtain more stable
results on the account of longer training time.

The performance of the robot with different neural networks over a duration of five
minutes in the test map differs from the test map shown in Table 3. It proved that the
DRL-based obstacle avoidance method has the potential to deal with similar situations it
had already learned. Further tests of the robustness of the proposed controller were con-
ducted in the real world.

Table 3. Performance of obstacle avoidance approach.

Decay Rate β Number of Collisions in 5 min
0.999 0
0.997 1
0.995 2

Figure 12 shows a sequence of frames captured from the simulated environment with
a virtual STORM locomotion module under the DRL-based obstacle avoidance controller.
For the simulated case, the virtual robot maneuvers through the narrow corridor-like
maze successfully without any collisions. In comparison, another sequence of frames cap-
tured from the simulation is shown in Figure 13 with the locomotion module under the
DWA local planner. The trajectories of the robot under the action of the two different
planners are compared in Figure 14. As seen from Figure 13b, the robot goes out of the
maze due to the lack of environmental information in order to plan a global path in ad-
vance. After a recovery behavior, the robot comes up with a new plan and goes in the
correct direction, as shown in Figure 13c,d. It should be noted that at one of the corners of
the maze, as shown in Figure 13e,f, the robot almost bumped into the wall and failed to
come up with a reliable local path. The reason is that the costmap generated from the
odometer data was not precise at that specific time step, as shown in Figure 14b. This
causes the robot to spin around and collect more information and thereby plan a new
path. In conclusion, the proposed DRL-based method is capable of planning a proper mo-
tion for the mobile robot solely based on the data collected from the laser sensor directly.
This in turn reduces the inaccuracy caused by other processes, such as costmap genera-
tion.

Figure 12. STORM locomotion module with the proposed DRL-based planner initialized at (a)
starting position, successfully passes the corners with special features shown in (b), (d), (e), and
the corridors as shown in (c), (f), (g); finally goes to the goal position in the virtual environment.

Figure 12. STORM locomotion module with the proposed DRL-based planner initialized at (a) start-
ing position, successfully passes the corners with special features shown in (b,d,e), and the corridors
as shown in (c,f,g); finally goes to the goal position in the virtual environment.

Robotics 2021, 10, x FOR PEER REVIEW 17 of 20

Figure 13. STORM locomotion module with the DWA local planner initialized at the (a) starting
position goes out of the maze due to the lack of environmental information. In a recovery behavior,
the robot comes up with a new plan and goes in the correct direction, as shown (b), (c), (d). At one
of the corners of the maze, as shown in (e), (f), (g), the robot almost bumped into the wall and failed
to come up with a reliable local path. It finally goes to the (h) goal position.

Figure 14. (a) Comparison between the trajectories of the proposed DRL-based planner and the
DWA local Planner. (b) The costmap feeds into the DWA planner at the moment the robot fails to
produce a path.

5.5. Real-World Implementation
The obstacle avoidance controller for the STORM prototype was embedded in the

control layer. The neural network trained with β = 0.999 was selected as it offered the best
performance. As mentioned before, the trained neural network was made to run on a
workstation since it was beyond the computational power of the onboard single board
computer. The neural network generated the command (,)i ma v ω= with an update rate
of 10 Hz. These commands were subscribed by the command manager on board STORM
locomotion module and converted into the proper form for the actuation layer.

As mentioned before, the neural network found optimal actions based on the sensor
observations in the simulated world, but the map was the same as that used for training.
In order to validate the ability of the robot to travel without collisions, not only in the same
map as the training case but also in environments with different features, three maps dif-
ferent from the training scenarios were built to test the robot. One of the maps had a cir-
cular feature with different diameters as compared to the simulated training environment.
Figure 15 shows the three test maps and the trajectories followed by the robot when trav-
eling through the maps. The robot traveled in each of the three maps for five minutes
without collision. This proved that the proposed approach could handle situations differ-
ent from the training scenario provided in the 3D simulation.

Figure 13. STORM locomotion module with the DWA local planner initialized at the (a) starting
position goes out of the maze due to the lack of environmental information. In a recovery behavior,
the robot comes up with a new plan and goes in the correct direction, as shown (b–d). At one of the
corners of the maze, as shown in (e–g), the robot almost bumped into the wall and failed to come up
with a reliable local path. It finally goes to the (h) goal position.

Robotics 2021, 10, x FOR PEER REVIEW 17 of 20

Figure 13. STORM locomotion module with the DWA local planner initialized at the (a) starting
position goes out of the maze due to the lack of environmental information. In a recovery behavior,
the robot comes up with a new plan and goes in the correct direction, as shown (b), (c), (d). At one
of the corners of the maze, as shown in (e), (f), (g), the robot almost bumped into the wall and failed
to come up with a reliable local path. It finally goes to the (h) goal position.

Figure 14. (a) Comparison between the trajectories of the proposed DRL-based planner and the
DWA local Planner. (b) The costmap feeds into the DWA planner at the moment the robot fails to
produce a path.

5.5. Real-World Implementation
The obstacle avoidance controller for the STORM prototype was embedded in the

control layer. The neural network trained with β = 0.999 was selected as it offered the best
performance. As mentioned before, the trained neural network was made to run on a
workstation since it was beyond the computational power of the onboard single board
computer. The neural network generated the command (,)i ma v ω= with an update rate
of 10 Hz. These commands were subscribed by the command manager on board STORM
locomotion module and converted into the proper form for the actuation layer.

As mentioned before, the neural network found optimal actions based on the sensor
observations in the simulated world, but the map was the same as that used for training.
In order to validate the ability of the robot to travel without collisions, not only in the same
map as the training case but also in environments with different features, three maps dif-
ferent from the training scenarios were built to test the robot. One of the maps had a cir-
cular feature with different diameters as compared to the simulated training environment.
Figure 15 shows the three test maps and the trajectories followed by the robot when trav-
eling through the maps. The robot traveled in each of the three maps for five minutes
without collision. This proved that the proposed approach could handle situations differ-
ent from the training scenario provided in the 3D simulation.

Figure 14. (a) Comparison between the trajectories of the proposed DRL-based planner and the DWA
local Planner. (b) The costmap feeds into the DWA planner at the moment the robot fails to produce
a path.

Robotics 2021, 10, 73 17 of 19

5.5. Real-World Implementation

The obstacle avoidance controller for the STORM prototype was embedded in the
control layer. The neural network trained with β = 0.999 was selected as it offered the
best performance. As mentioned before, the trained neural network was made to run on
a workstation since it was beyond the computational power of the onboard single board
computer. The neural network generated the command ai = (v, ωm) with an update rate
of 10 Hz. These commands were subscribed by the command manager on board STORM
locomotion module and converted into the proper form for the actuation layer.

As mentioned before, the neural network found optimal actions based on the sensor
observations in the simulated world, but the map was the same as that used for training.
In order to validate the ability of the robot to travel without collisions, not only in the
same map as the training case but also in environments with different features, three maps
different from the training scenarios were built to test the robot. One of the maps had a
circular feature with different diameters as compared to the simulated training environment.
Figure 15 shows the three test maps and the trajectories followed by the robot when
traveling through the maps. The robot traveled in each of the three maps for five minutes
without collision. This proved that the proposed approach could handle situations different
from the training scenario provided in the 3D simulation.

Robotics 2021, 10, x FOR PEER REVIEW 18 of 20

Figure 15. The test maps and the trajectories of the robot.

6. Conclusions and Future Work
The DRL-based method shows the potential to improve the performance of the robot

when avoiding obstacles in some highly occupied environments and problematic scenar-
ios. The proposed DRL architecture was trained inside a simulated Gazebo environment
to allow for sufficient data collection over varied features without any damage to the real
robot. The results from the simulations show that more exploration in training leads to
stably increased rewards with slow training speed. The trained DRL architecture was
tested in real-world scenarios with the STORM locomotion module. The experimental re-
sults show that the proposed approach was able to perform well in previously unseen
scenarios that are much different from the training scenario, thereby proving a general-
ized nature of the trained architecture.

Future work will incorporate a specified goal position without a prior map, along
with obstacle avoidance capabilities. The maps developed in the Gazebo simulator aimed

Figure 15. The test maps and the trajectories of the robot.

Robotics 2021, 10, 73 18 of 19

6. Conclusions and Future Work

The DRL-based method shows the potential to improve the performance of the robot
when avoiding obstacles in some highly occupied environments and problematic scenarios.
The proposed DRL architecture was trained inside a simulated Gazebo environment to
allow for sufficient data collection over varied features without any damage to the real
robot. The results from the simulations show that more exploration in training leads to
stably increased rewards with slow training speed. The trained DRL architecture was
tested in real-world scenarios with the STORM locomotion module. The experimental
results show that the proposed approach was able to perform well in previously unseen
scenarios that are much different from the training scenario, thereby proving a generalized
nature of the trained architecture.

Future work will incorporate a specified goal position without a prior map, along with
obstacle avoidance capabilities. The maps developed in the Gazebo simulator aimed
to emphasize the compact spaced environment and problematic scenarios. The train-
ing environment should be more complex and involve various features to enable robust
performances of the robot. Further training and investigations will include a multi-stage
training with a shared memory set and maps of gradually increased difficulty, in contrast
to learning directly from the complex environments. Besides, the training efficiency will
be taken into consideration when improving the proposed obstacle avoidance methods.
To a larger extent, this work is a step forward in enabling multi-robot exploration and
navigation in unknown environments for the STORM system. As part of future work,
new simulation environments with moving obstacles and uneven terrain will be considered
to enrich the experience of the trained neural network.

Author Contributions: Methodology, S.F.; project administration, P.B.-T.; supervision, P.B.-T.; valida-
tion, S.F.; writing—original draft, S.F.; writing—review and editing, B.S. and P.B.-T. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; et al.

Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv 2017, arXiv:1712.01815.
2. François-Lavet, V.; Henderson, P.; Islam, R.; Bellemare, M.G.; Pineau, J. An Introduction to Deep Reinforcement Learning. Found.

Trends Mach. Learn. 2018, 11, 219–354. [CrossRef]
3. Moreira, I.; Rivas, J.; Cruz, F.; Dazeley, R.; Ayala, A.; Fernandes, B. Deep reinforcement learning with interactive feedback in a

human-robot environment. Appl. Sci. 2020, 10, 5574. [CrossRef]
4. Gu, S.; Holly, E.; Lillicrap, T.; Levine, S. Deep reinforcement learning for robotic manipulation with asynchronous off-

policy updates. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore,
29 May–3 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 3389–3396. [CrossRef]

5. Pirník, R.; Hruboš, M.; Nemec, D.; Mravec, T.; Božek, P. Integration of inertial sensor data into control of the mobile platform.
Adv. Intell. Syst. Comput. 2017, 511, 271–282.

6. Kilin, A.; Bozek, P.; Karavaev, Y.; Klekovkin, A.; Shestakov, V. Experimental investigations of a highly maneuverable mobile
omniwheel robot. Int. J. Adv. Robot. Syst. 2017, 14, 1–9. [CrossRef]

7. Zhu, Y.; Mottaghi, R.; Kolve, E.; Lim, J.J.; Gupta, A.; Fei-Fei, L.; Farhadi, A. Target-driven visual navigation in indoor scenes using
deep reinforcement learning. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA),
Singapore, 29 May–3 June 2017; IEEE: Piscataway, NJ, USA, 2017; Volume 1, pp. 3357–3364.

8. Tai, L.; Paolo, G.; Liu, M. Virtual-to-real deep reinforcement learning: Continuous control of mobile robots for mapless navigation.
In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
24–28 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 31–36.

9. Ulrich, I.; Borenstein, J. VFH*: Local obstacle avoidance with look-ahead verification. In Proceedings of the Proceedings 2000 ICRA.
Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065),
San Francisco, CA, USA, 24–28 April 2000; IEEE: Piscataway, NJ, USA, 2000; Volume 3, pp. 2505–2511.

http://doi.org/10.1561/2200000071
http://doi.org/10.3390/app10165574
http://doi.org/10.1109/ICRA.2017.7989385
http://doi.org/10.1177/1729881417744570

Robotics 2021, 10, 73 19 of 19

10. Gazebo. Available online: http://gazebosim.org/ (accessed on 12 May 2017).
11. Kumar, P.; Saab, W.; Ben-Tzvi, P. Design of a Multi-Directional Hybrid-Locomotion Modular Robot With Feedforward Stability

Control. In Proceedings of the Volume 5B: 41st Mechanisms and Robotics Conference, Cleveland, OH, USA, 6–9 August 2017;
ASME: New York, NY, USA, 2017; p. V05BT08A010. [CrossRef]

12. Ben-Tzvi, P.; Saab, W. A hybrid tracked-wheeled multi-directional mobile robot. J. Mech. Robot. 2019, 11, 1–10. [CrossRef]
13. Moubarak, P.M.; Alvarez, E.J.; Ben-Tzvi, P. Reconfiguring a modular robot into a humanoid formation: A multi-body dynamic

perspective on motion scheduling for modules and their assemblies. In Proceedings of the 2013 IEEE International Conference
on Automation Science and Engineering (CASE), Madison, WI, USA, 17–21 August 2013; IEEE: Piscataway, NY, USA, 2013;
pp. 687–692. [CrossRef]

14. Sebastian, B.; Ben-Tzvi, P. Physics Based Path Planning for Autonomous Tracked Vehicle in Challenging Terrain. J. Intell. Robot.
Syst. Theory Appl. 2018, 1–16. [CrossRef]

15. Sebastian, B.; Ben-Tzvi, P. Active Disturbance Rejection Control for Handling Slip in Tracked Vehicle Locomotion. J. Mech. Robot.
2018, 11, 021003. [CrossRef]

16. Sohal, S.S.; Saab, W.; Ben-Tzvi, P. Improved Alignment Estimation for Autonomous Docking of Mobile Robots. In Proceedings of the
Volume 5A: 42nd Mechanisms and Robotics Conference, Quebec City, QC, Canada, 26–29 August 2018; ASME: New York, NY, USA,
2018; p. V05AT07A072. [CrossRef]

17. Hart, P.; Nilsson, N.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst. Sci.
Cybern. 1968, 4, 100–107. [CrossRef]

18. Lozano-Pérez, T.; Wesley, M.A. An Algorithm for Planning Collision-Free Paths Among Polyhedral Obstacles. Commun. ACM
1979, 22, 560–570. [CrossRef]

19. Khatib, O. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. Int. J. Rob. Res. 1986, 5, 90–98. [CrossRef]
20. Brock, O.; Khatib, O. High-speed navigation using the global dynamic window approach. In Proceedings of the Proceedings 1999

IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C), Detroit, MI, USA, 10–15 May 1999; IEEE:
Piscataway, NJ, USA, 1999; Volume 1, pp. 341–346.

21. Koren, Y.; Borenstein, J. Potential field methods and their inherent limitations for mobile robot navigation. In Proceedings of the
Proceedings. 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, 7–12 April 1991; IEEE:
Piscataway, NJ, USA, 2016; Volume 11, pp. 1398–1404.

22. Borenstein, J.; Koren, Y. The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Trans. Robot. Autom. 1991, 7,
278–288. [CrossRef]

23. Faisal, M.; Hedjar, R.; Al Sulaiman, M.; Al-Mutib, K. Fuzzy logic navigation and obstacle avoidance by a mobile robot in an
unknown dynamic environment. Int. J. Adv. Robot. Syst. 2013, 10, 37. [CrossRef]

24. Pothal, J.K.; Parhi, D.R. Navigation of multiple mobile robots in a highly clutter terrains using adaptive neuro-fuzzy inference
system. Rob. Auton. Syst. 2015, 72, 48–58. [CrossRef]

25. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
26. Dechter, R.; Pearl, J. Generalized Best-First Search Strategies and the Optimality of A. J. ACM 1985, 32, 505–536. [CrossRef]
27. Kavraki, L.E.; Svestka, P.; Latombe, J.-C.; Overmars, M.H. Probabilistic roadmaps for path planning in high-dimensional

configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [CrossRef]
28. Elbanhawi, M.; Simic, M. Sampling-based robot motion planning: A review. IEEE Access 2014, 2, 56–77. [CrossRef]
29. Ulrich, I.; Borenstein, J. VFH+: Reliable obstacle avoidance for fast mobile robots. Proc. IEEE Int. Conf. Robot. Autom. 1998, 2, 1572–1577.
30. Haarnoja, T.; Pong, V.; Zhou, A.; Dalal, M.; Abbeel, P.; Levine, S. Composable deep reinforcement learning for robotic manipulation.

arXiv 2018, arXiv:1803.06773v1.
31. Wang, C.; Wang, J.; Shen, Y.; Zhang, X. Autonomous Navigation of UAVs in Large-Scale Complex Environments: A Deep

Reinforcement Learning Approach. IEEE Trans. Veh. Technol. 2019, 68, 2124–2136. [CrossRef]
32. Feng, S.; Ren, H.; Wang, X.; Ben-Tzvi, P. Mobile robot obstacle avoidance base on deep reinforcement learning. Proc. ASME Des.

Eng. Tech. Conf. 2019, 5A-2019, 1–8.
33. Sutton, R.S.; Barto, A.G. Chapter 1 Introduction. Reinf. Learn. An Introd. 1988. [CrossRef]
34. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep

Reinforcement Learning. arXiv 2013, arXiv:1312.5602.
35. Van Hasselt, H.; Guez, A.; Silver, D. Deep Reinforcement Learning with Double Q-learning. Assoc. Adv. Artif. Intell. 2016, 30,

2094–2100.
36. Saab, W.; Ben-Tzvi, P. A Genderless Coupling Mechanism with 6-DOF Misalignment Capability for Modular Self-Reconfigurable

Robots. J. Mech. Robot. 2016, 8, 1–9. [CrossRef]
37. POZYX Positioning System. Available online: https://www.pozyx.io/ (accessed on 23 February 2018).
38. Mandow, A.; Martinez, J.L.; Morales, J.; Blanco, J.L.; Garcia-Cerezo, A.; Gonzalez, J. Experimental kinematics for wheeled

skid-steer mobile robots. IEEE Int. Conf. Intell. Robot. Syst. 2007, 1222–1227. [CrossRef]

http://gazebosim.org/
http://doi.org/10.1115/DETC2017-67436
http://doi.org/10.1115/1.4043599
http://doi.org/10.1109/CoASE.2013.6653891
http://doi.org/10.1007/s10846-018-0851-3
http://doi.org/10.1115/1.4042347
http://doi.org/10.1115/DETC2018-85626
http://doi.org/10.1109/TSSC.1968.300136
http://doi.org/10.1145/359156.359164
http://doi.org/10.1177/027836498600500106
http://doi.org/10.1109/70.88137
http://doi.org/10.5772/54427
http://doi.org/10.1016/j.robot.2015.04.007
http://doi.org/10.1007/BF01386390
http://doi.org/10.1145/3828.3830
http://doi.org/10.1109/70.508439
http://doi.org/10.1109/ACCESS.2014.2302442
http://doi.org/10.1109/TVT.2018.2890773
http://doi.org/10.2105/AJPH.50.1.21
http://doi.org/10.1115/1.4034014
https://www.pozyx.io/
http://doi.org/10.1109/IROS.2007.4399139

	Introduction
	Related Works
	Autonomous Navigation
	Deep Reinforcement Learning in Robotics

	Collision Avoidance Approach
	Problem Formulation
	DRL Methods
	Collision Avoidance with DRL
	Implementation Details

	Robot Platform Description
	Mechanical System
	Electronic System
	Software System

	Simulations and Results
	Kinematic Model of the Virtual STORM Module
	Training Parameter Selection and Analysis
	Comparison with State-of-the-Art Method
	Simulation Results
	Real-World Implementation

	Conclusions and Future Work
	References

