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This paper describes the use of support vector machine (SVM) classifier for real-time terrain estimation to improve 

autonomous navigation of tracked mobile robots. Real-time terrain identification and terrain property estimation 

has been explored previously for application on a wide range of systems from planetary exploration rovers to 

commercial vehicles like cars and trucks. A majority of the existing methods rely on the use of dedicated sensors 

including vibration sensors, accelerometers, cameras, LIDAR, etc., which makes them susceptible to the failure 

modes of each of these sensors. This work proposes a method for real-time classification of different terrain types 

based on the state evolution of a ground robot, specifically the measured change in the pose of the robot for a 

known control input. By using a trained SVM to perform terrain estimation based on the collected state evolution 

data, the proposed method does not require dedicated sensing modalities solely for the terrain estimation. In 

addition, this method is generally applicable in all conditions where the robot can traverse. The training data 

was obtained from four different terrain conditions including vinyl flooring, asphalt, artificial turf, and grass–

gravel, to train the SVM to perform terrain estimation. The proposed technique is validated using a skid-steer 

tracked robot over multiple simulated and real terrain transitions cases, where the response to control inputs 

is significantly affected by terrain characteristics. The results show that the proposed method provides greater 

than 80% accuracy in all cases, with fast detection of terrain transitions. The paper concludes with a detailed 

description on the application of real-time terrain estimation in improving autonomous navigation. 
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. Introduction 

Autonomous navigation of mobile robots has advanced greatly in re-

ent years; this is evident in the world wide development of self-driving

echnology, advanced driver assistance features that are commonplace

n most commercial vehicles, and the wide spread commercial use

f warehouse automation robots. Despite these breakthrough achieve-

ents, autonomous navigation in its true sense, especially in unstruc-

ured terrain conditions, is still an unsolved problem. This is evident

rom the fact that the majority of ground vehicles deployed in search

nd rescue operations in the past decades were remotely operated [1–

] and that recent efforts by the military toward the use of Squad Mul-

ipurpose Equipment Transport (SMET) [4,5] systems have also been

ocused toward semi-autonomous capabilities, including leader follow-

ng approaches and remote guidance. 

While navigating in unstructured terrain conditions, through au-

onomous or tele-operated manner, performing high level planning and

ontrol requires detailed knowledge of the terrain. Vision based meth-

ds can be used for terrain estimation, but they are highly susceptible
✩ This paper was recommended for publication by Associate Editor D. Hoelzle. 
∗ Corresponding author. 

E-mail address: bentzvi@vt.edu (P. Ben-Tzvi). 

ttps://doi.org/10.1016/j.mechatronics.2019.102260 

eceived 16 January 2019; Received in revised form 25 July 2019; Accepted 9 Augu

957-4158/© 2019 Elsevier Ltd. All rights reserved. 
o changes in ambient light and other environment conditions such as

resence of smoke, fog, or dust. Other sensor based approaches includ-

ng LIDAR and Inertial Measurement Units (IMU) are also not robust

nough. For example, while a rocky slope and an expanse of loose sand

t same gradient may look similar in a 3D scan, the robot can fail to

limb or become entrenched on the sandy slope depending on a number

f factors. Currently, for systems that are deployed in the field, high level

avigation decisions are made by a human operator based on feedback

rom the camera or LIDAR systems. The most recent DARPA Subter-

anean (SubT) Challenge [6] requires roboticists to address the problem

f terrain estimation in order to enable fully autonomous navigation in

nstructured conditions. 

In addition to improving the autonomous navigation capabilities of

errestrial rovers, and search and rescue robots, real-time terrain esti-

ation can also benefit commercial vehicles such as cars and trucks

hrough improvements in advanced driver assistance systems (ADAS)

hich in turn leads to fully autonomous driving. Generating accurate

redictions about how the vehicle is going to respond to various ma-

euvering commands from the onboard planning system is vital for safe
st 2019 
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utonomous driving. In this regard, ascertaining road terrain parame-

ers is crucial, as vehicle behavior and the safe limits, including maxi-

um safe acceleration and braking limits, vary drastically with changes

n the terrain. There exist studies by different groups in using a wide

ariety of sensing modalities mounted on vehicles including radar [7] ,

mages from a monocular camera [8] , and RGBD point clouds obtained

rom a stereo camera pair [9] to estimate the terrain conditions. In most

ases, the goal was long range binary classification of the terrain into

avigable and non-navigable areas aimed at both on-road and off-road

utonomous navigation. 

In comparison to the existing research, this work proposes a method

or real-time classification of different terrain types based on the state

volution of a ground robot, specifically the measured change in pose of

he robot for a known control input. An offline technique to determine

he features of interest from the collected training data is presented.

 support vector machine (SVM) classifier is trained on the principal

omponents (PCs) of the weights associated with the features of interest

o perform terrain estimation. The online moving window least squares

stimation technique used to update the weights in real-time is also pre-

ented along with the SVM architecture. 

By using a trained SVM to perform terrain estimation based on the

ollected state evolution data, the proposed method does not require

edicated sensing modalities solely for terrain estimation. As such, this

ethod is generally applicable in all conditions where the robot can tra-

erse. The training data was obtained from four different terrain condi-

ions including vinyl flooring, asphalt, artificial turf, and grass–gravel.

he proposed technique is validated using a skid-steer tracked robot,

here the response to control inputs is significantly affected by ter-

ain characteristics, over multiple simulated and real terrain transitions

ases. 

It should be noted that the proposed technique enables the robot to

dentify the terrain it is operating on, based on previously learned ter-

ain types. This requires the robot to travel over a given terrain condition

nd collect data regarding how the robot pose changes for a given con-

rol input. As such it cannot be used to classify terrain into navigable

ersus non-navigable as the robot cannot collect motion data on non-

avigable terrain. Readers interested in navigable versus non-navigable

lassification of terrain should refer to prior work by the authors that

pecifically addressed this issue [10] . 

The rest of the paper is organized as follows: Section 2 provides a de-

ailed literature review in this domain including prior work on terrain

stimation for planetary rovers and commercial vehicles. Section 3 de-

cribes the shortcomings of the existing methods, outlines the proposed

ethod along with its novelty, and explains how it addresses the short-

omings of existing techniques. Section 4 presents experimental valida-

ion of the proposed technique, Section 5 describes techniques to im-

rove autonomous navigation using the terrain estimation results, and

ection 6 concludes the work with directions for future research. 

. Literature review 

Planetary exploration missions are a major application area where

nline terrain parameter estimation is used to improve navigation. Ter-

ain estimation allows the rovers to operate with minimal human su-

ervision in terrain conditions that are often challenging and previously

nseen. To this extent, Iagnemma et al. [11] used a simplified form of

lassical terramechanics equations along with a linear-least squares esti-

ator to compute terrain parameters in real-time. Since their approach

elied on terramechanics equations, it assumed that the vertical load on

he robot, torque applied on motors, sinkage of the robot, wheel an-

ular speed, and wheel linear speed could be measured or estimated.

his requires additional sensors on the robot. On a similar note, Reina

t al. [12] proposed methods for wheel slippage and sinkage detection

s applied to planetary rovers by comparing wheel encoder readings

ith gyro readings and motor current in order to detect slip. They also

roposed a novel vision based method to detect wheel sinkage. 
One of the major disadvantages of vision based methods is that they

re susceptible to variations in ambient light and the presence of dust,

moke, or other environmental conditions. In addition, vision and range

ased methods are not good at detecting non-geometric hazards, such

s in cases when the topmost layer of terrain is different from the un-

erlying load bearing surface. To handle these issues Iagnemma and

rooks [13] have explored terrain classification based on the vibrations

nduced on the rover by the wheel-terrain interaction during driving.

heir approach aimed at creating a stand-alone classifier by perform-

ng standard signal processing techniques on the data collected from a

ibration sensor mounted on the wheel of the rover. On a similar note,

iguere and Dudek [14] attached an accelerometer at the end of a metal-

ic rod to form a tactile probe. The acceleration patterns induced at the

ip of the rod were analyzed to estimate the terrain conditions using a

rained neural network. Similarly, Park et al. [15] used peak variances

xtracted from contact sensor data to perform terrain classification. Wolf

nd Sukhatme proposed the use of Hidden Markov Models (HMMs) and

VMs for semantic terrain mapping [16] . They used data provided by

ange sensors and odometers to classify the terrain into navigable and

on-navigable regions. Weiss et al. [17] proposed the use of an SVM

rained over raw vibration sensor data collected by the robot to perform

errain classification. They proposed that based on the terrain estima-

ion data, the vehicle could adapt its driving style to better match the

errain being traversed. Their method was compared to five other exist-

ng vibration-based terrain classification methods in [18] and the results

howed that significantly better performance. An interesting example of

he application of environment identification to improve autonomous

avigation was presented by Giguere et al. in [19] . They performed en-

ironment identification based on actuator and inertial sensor data to

utonomously switch between walking and swimming for their amphibi-

us hexapod, AQUA. 

In addition to rovers, real-time estimation of terrain parameters has

een explored in the context of commercial vehicles including cars and

rucks. As mentioned by Wang et al. in [20] , real-time terrain estima-

ion can improve the performance of driver assistance systems by spec-

fying terrain specific driving strategies aimed at improving factors like

uel efficiency. They proposed a two-stage road terrain identification ap-

roach for land vehicles using feature-based and Markov random field

lgorithms. As per their approach, feature-based identification results

btained using an accelerometer, camera, and LRF was improved upon

y using a Markov Random Field (MRF) to get optimal identification

esults. A more recent work by Khaleghian and Taheri looks at terrain

lassification methods using an intelligent tire [21] . The intelligent tire

etup essentially consists of a tri-axial accelerometer attached to the

ire inner liner, wheel speed sensors, and an additional accelerometer

n the vehicle chassis along with a data acquisition system. In addition,

he robot also had free wheels for accurately measuring slip. Based on

he accelerometer readings and the wheel slip ratio, a fuzzy logic algo-

ithm was used to perform terrain classification. 

The survey by Khaleghian et al. [22] , lists recent advances in tire-

oad friction estimation toward improving vehicle’s stability, traction,

nd ABS controller performance for cars. This work provides a detailed

ummary of existing approaches including optical, acoustic, and tire

read sensors in addition to model based methods toward estimating

ire-road friction. Even though commercial vehicles could also benefit

reatly from terrain estimation and road parameter estimation, the rest

f the paper will focus on these techniques as applied to the motion of

racked skid steer robots in varying terrain conditions. The applicability

o commercial vehicles will be further addressed as part of future work.

. Proposed real-time terrain estimation method 

A main point to notice based on the above review is that almost

ll existing works use dedicated sensing systems solely for estimating

he terrain type or to estimate the terrain characteristics like roughness,

riction, etc. A majority of the terrain estimation methods use contact
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Fig. 1. The experimental setup and the various terrain conditions for data col- 

lection: (a) STORM, (b) vinyl flooring, (c) asphalt, (d) artificial turf, and (d) 

grass–gravel. 
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ensors, non-contact sensors, or a combination of both. As such these

ethods are susceptible to the failure modes on each sensing type. On

he other hand this paper tries to explore the idea of using the robot itself

s the sensor. This work is based on the hypothesis that the state evo-

ution of the robot on any given terrain contains sufficient information

o accurately perform terrain estimation, provided the control inputs

pplied to the robot are known. This eliminates the need for dedicated

ensors, which removes the associated limitations and failure modes,

hile also making the method generally applicable in all possible terrain

onditions, where the robot can navigate. A similar approach toward

stimating wind parameters using an RC helicopter has been explored

efore [23] . In addition to the real-time terrain estimation method, this

aper proposes potential techniques to improve navigation, especially

n the areas of control, fault monitoring, autonomous path planning,

nd improving localization of mobile robotic systems traversing over

arying terrain conditions. 

The rest of this section is divided into three subsections, the first

ubsection explores the use of linear regression techniques to identify

he features of interest that capture the effects of the terrain over which

he robot is moving, the second subsection introduces methods for real-

ime estimation of the weights associated with the features of interest

nd the final subsection introduces principal component analysis (PCA)

o reduce the dimensionality of the data, along with the support vector

achine (SVM) classifier to perform terrain classification based on the

Cs of the estimated weight values. The overall method is summarized

t the end of this section in Fig. 5 . 

.1. Identifying features of interest 

Recently there has been significant interest toward using machine

earning based model fitting to identify the features of interest that rep-

esent a physical process [24,25] . The overall approach can be summa-

ized as follows: experimental data is used to create an over-complete

ibrary of possible features of interest, consisting of the variables in-

olved in the process, nonlinear functions of these variables and even

heir products. A regression method is then used to find the best fitting

odel over the experimental data. Based on the best fitting model, fea-

ures that show high weights can be easily identified as the features of

nterest. These would be the features that contribute the most toward

he governing equations that represent the physical process. The above

pproach was used to identify the features of interest for the motion of

 tracked skid steer robot over varying terrain conditions. Experimental

ata was obtained by driving the robot STORM [26] over four different

errain conditions with ten trails on each terrain. The terrain conditions

onsisted of asphalt, vinyl flooring, artificial turf, and a combination of

rass and gravel. Each trial consisted of driving the robot in a square

ver the terrain with side length of 4–6 m. 

For the data collection trials the robot was manually driven over

egions where the terrain conditions were uniform within the POZYX

ensing limits. The path followed by the robot for the duration of the

rial was recorded using the absolute positioning system POZYX [27] .

he control inputs were recorded using the wheel encoders on the robot.

ach instance of the recorded data consists of previous 2D pose of the

obot including position (x t , y t ) and yaw angle θt , control inputs given

o the robot in terms of linear and angular velocity (V t , ω t ), along with

he current position and orientation of the robot ( x t+1 , y t+1 , θt+1 ). The

xperimental platform and the terrain over which it was run are shown

n Fig. 1 . Since the experimental data was collected with a light weight

obot moving at low speeds, with negligible inertial effects, a kinematic

nalysis of the motion was considered sufficient. 

The motion of differential drive platforms with one or more sup-

orting castor wheels can be modeled accurately with a simple unicycle

obot model, as given below. 

 t+1 = x t + V t cos θt Δt 
 t+1 = y t + V t sin θt Δt 
t+1 = θt + ω t Δt 

(1) 
here (x, y) is the 2D position robot fixed frame {R} with respect to the

lobal inertial frame {G}, and θ represents the orientation of {R}, with

espect to {G} about the Z-axis. In Eq. (1) Δt denotes the time gap be-

ween the current robot pose (x t , y t , θt ) and the pose at the next time step

 x t+1 , y t+1 , θt+1 ). Existing studies [28,29] have shown that the motion

f skid steer platforms, especially in varying terrain conditions, deviate

onsiderably from the ideal model given by Eq. (1) . Modifications to

he ideal model have been suggested recently, including instantaneous

enter of rotation (ICR) based kinematics models [28,30] , to better ap-

roximate the motion of skid steer robots on varying terrain conditions.

n contrast to existing approaches, we perform linear regression on the

ollected data to determine the features of interest and thereby formu-

ate a more accurate governing equation for the motion of tracked skid

teer robots in a data driven manner. The linear regression model used

n the data takes the form of: 

 = 𝐰𝐱 + 𝐛 (2) 

here the feature vector and the output vector are given by 

 = 

[
x t , y t , θt , V t Δt , ω t Δt , V t cosθt Δt , V t sinθt Δt , ω t cosθt Δt , ω t sinθt Δt 

]T 

 = 

[
x t+1 , y t+1 , θt+1 

]T (3) 

For Eq. (2) , w is the matrix of weights that linearly map the feature

ector x to output vector Y, k is the total number of features in the over

omplete library, and b contains the constant bias term for each equa-

ion. For the chosen feature vector x shown in Eq. (3) , the total number

f features k is nine. Therefore w is a 3 ×9 matrix, with w ij being each

lement where i varies from 1 to 3 corresponding to linear regression

odels for x t+1 , y t+1 , θt+1 and j varies from 1 to k. The feature vec-

or, x was chosen based on the existing research that suggested possible
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Table 1 

Experimental data used for model fitting. 

Terrain condition Number of data points R squared test score 

Simulated model x t+1 7885 0.999 

y t+1 0.999 

θt+1 0.989 

Asphalt x t+1 7596 0.999 

y t+1 0.999 

θt+1 0.992 

Grass-gravel x t+1 7059 0.982 

y t+1 0.967 

θt+1 0.993 

Artificial turf x t+1 6673 0.994 

y t+1 0.998 

θt+1 0.997 

Vinyl flooring x t+1 6000 0.999 

y t+1 0.998 

θt+1 0.996 
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odifications to the unicycle model to better approximate the motion

f skid steer vehicle on varying terrain [29] . To verify the feasibility of

he proposed method, the ideal unicycle model, as given by Eq. (1) , was

imulated in MATLAB, without any added noise. The state variables (x,

, θ) were initialized at zero and control inputs (V, ω ) were applied to

he model to make the robot move in a circle, straight line, sinusoidal

ath, and also turn in place. The linear regression method, applied to

he experimental data, was applied to the simulated ideal data as well. 

Performing least square regression on the experimental data al-

ows us to determine the weights associated with each feature

iven in Eq. (3) for the governing equations corresponding to

 t+1 , y t+1 , and θt+1 . The number of data points collected for each ter-

ain condition and the R squared test score for the best fit model are

iven in Table 1 . As per the R squared test score, the models given by

he regression algorithm provide a good fit on the experimental data.

ig. 2 shows the absolute value of the weights corresponding to each

eature as obtained from the best fit model, for the different data sets.

n Fig. 2 , the features that show higher weights are the ones that con-

ribute most toward the motion of the robot. By identifying the features
hat have high weights ( > 0.5) in at least one terrain condition, a more

ccurate governing equation representing the evolution of the robot’s

tates can be formed: 

 t+1 = w 11 x t + w 12 V t Δt + w 13 V t cos θt Δt + w 14 V t sin θt Δt 

 t+1 = w 21 y t + w 22 V t Δt + w 23 V t cos θt Δt + w 24 V t sin θt Δt 

t+1 = w 31 θt + w 32 V t Δt + w 33 V t cos θt Δt + w 34 V t sin θt Δt 

+ w 35 ω t Δt + w 36 ω t cos θt Δt + w 37 ω t sin θt Δt (4) 

The advantage of the above approach is that it allows us to pick

ut the features that are most relevant to the physical phenomenon,

hile ignoring all of the non-relevant ones, completely based on the

ollected experimental data. It should be noted that limiting the loop

ack condition on θ between [ − 𝜋, 𝜋) , will result in the linear regression

ailing to converge due to the inherent non linearity. To counter this,

he collected data was adjusted to remove the loop back of θ, allowing

t to continuously increase or decrease without limits. 

In addition to deciding upon the features of interest Fig. 2 also offers

ome additional insight worth discussing. The ideal weights for each

eature as per Eq. (1) are given in blue. The weights predicted by least

quare fit for the simulated data is shown in magenta. As seen from the

gure the ideal weights and the simulated data match perfectly as ex-

ected. This validates the fact that the linear regression fitting works as

xpected. On the other hand, the experimental data collected from each

errain gives a different set of weights as compared to the ideal model.

or example, as per the ideal model x t+1 should depend only on x t and

 t cos θt Δt , with weights equivalent to 1.0. This is true for the data gen-

rated from the ideal model, but the experimental data obtained from

ost of the terrain conditions depend on V t sin θt Δt as well. Similarly, the

quations for y t+1 an d θt+1 deviate from the ideal model for the experi-

ental data. Another important factor to note is that each terrain shows

ifferent optimal value of weights for a given feature of interest. It can

e inferred that the variations in the optimal value of weights is char-

cteristic to the terrain over which the robot is moving. In other words,

he weights associated with the features of interest holds characteristic

nformation about the terrain. 
Fig. 2. The absolute weights corresponding to 

each feature as obtained from the least squares 

fit. 



B. Sebastian and P. Ben-Tzvi Mechatronics 62 (2019) 102260 

 

a  

m  

c  

t  

w  

e

 

t  

t  

v  

w  

i

3

 

t  

o  

i  

e  

m  

a  

p  

k  

w

𝐘

 

a  

b  

c  

t  

i  

i  

u  

b  

e  

l  

w  

M  

u  

e  

t  

b  

e  

f

3

 

[  

o  

e  

r

 

l  

p  

a  

t  

t  

s  

t  

a  

Fig. 3. The first two PCs of the estimated weights. The figure shows (a) ground 

truth and (b) the classification results from the SVM. The magnitude of the first 

PC is along the X axis and the second along the Y axis. 
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It is possible that some of the above features may not contain char-

cteristic information about the terrain, and as such may not contribute

uch for the terrain estimation application. It is also possible that by

hoosing all features with weights > 0.5 in at least one terrain condi-

ion, some of the weights could be redundant. However, these problems

ill be addressed through the use of PCA over the estimated weights, as

xplained later in Section 3.3 . 

The model given in Eq. (4) can be used in the real-time estimation of

he weights, provided the pose data (x, y, θ) of the robot at time t and

 + Δt , along with the control input (V, ω ) is available. The estimated

alue of the weights in turn can be used to identify the terrain over

hich the robot moves. These points will be explored in greater detail

n the following section. 

.2. Real-time estimation of weights 

Based on the generalized model given in Eq. (4) , the following sec-

ion will explain the use of a moving window least squares estimator to

btain the best fitting value of the weights corresponding to each feature

n real-time. As mentioned in the previous section, at the least, a noisy

stimate of the robot’s pose is necessary to perform a least square esti-

ation of the weights. This is inherently necessary information for any

utonomous navigation application and can be obtained from different

ose estimation sensors such as the POZYX [27] , LOSA [31] , real-time

inematic (RTK) GPS, visual odometry etc. For the purpose of this paper

e will be analyzing data obtained from the POZYX system. 

Based on Eq. (4), Eq. (2) can be modified as; 

 = 𝐰𝐱 (5) 

It should be noted that while w is still a 3 ×9 matrix, only 15 weights

re non-zero (four for x t+1 , four for y t+1 , and seven for θt+1 ) as denoted

y Eq. (4) . In theory, all of the unknown weights could be estimated ac-

urately with just 15 measurements, but there are some practical limita-

ions to this. The POZYX system or any other positioning system working

n outdoor environments is susceptible to noise. As such, using the min-

mum number of measurements will result in a noisy estimation of the

nknown weights. Therefore, a large number of measurements needs to

e used with a moving window least squares estimator to reduce the

ffect of noise and improve accuracy. On the other hand using a very

arge window will require a large set of prior measurements before the

eights can be estimated. It will also lead to high computational cost.

oreover, with a large enough window it is possible to filter out the

nique effects of the terrain, which could adversely affect the terrain

stimation applications that will be discussed later. For the purpose of

his paper the filter size was manually tuned to 400 samples to yield the

est performance. It should be noted that the moving window starts the

stimation only after receiving the first 400 samples which takes about

our seconds based on the current setup. 

.3. Application to terrain estimation 

This section describes the use of support vector machine (SVM)

32] in performing terrain classification based on the estimated value

f the weights. As given by Eq. (4) , the estimator returns 15 weights at

ach instance, but it is possible that the some of them are interrelated,

esulting in redundancy of information. 

Principal component analysis is a popular method used in machine

earning community to remove redundancy of information. The princi-

al components are a linear combination of the original variables that

re orthogonal to each other. For the proposed application, even though

he total number of PCs is the same as the number of estimated weights,

he first ten PCs are sufficient to capture more than 98% of the data. It

hould be noted that, PCA is essentially eigenvalue decomposition and

herefore the chosen PCs are the first ten eigenvectors of the covari-

nce matrix of the estimated weights, in decreasing order of eigenvalue.
sing the orthogonal transformation given by the first ten PCs, the esti-

ated values of the 15 weights w ij as given by Eq. (4) were transformed

nto reduced dimensional data along the PCs w pi ( i = 1 − 10 ) . This re-

uced dimensional data transformed along the PCs, hereafter referred

o as the PCs of the estimated weights, was used in performing terrain

stimation. By using the PCs of the estimated weights for the terrain esti-

ation, the computational load in performing the estimation is reduced

hile maintaining an acceptable amount of accuracy. 

SVMs have been used previously in terrain estimation, specifically

n vibration based terrain estimation techniques [17,18] . They allow

or nonlinear classification based on the kernel function used inside

he SVM. For the proposed terrain estimation technique an SVM with

 Radial Basis kernel function (RBF) was used on the reduced dimen-

ional data. For the SVM implementation we used the Statistics and Ma-

hine Learning Toolbox in MATLAB [33] . A one- versus-rest classification

as implemented using multiclass error-correcting output codes (ECOC)

odel containing multiple SVM binary learners as provided by the MAT-

AB Toolbox. Before training the SVM, the collected data was randomly

ivided into training and test data sets in 3:1 ratio. 

Fig. 3 shows the first two PCs of the collected data with ground truth

arking and the SVM terrain estimation over the whole range of values.

sing ten PCs gives 85.27% accuracy on the training data and 84.3% ac-

uracy on the test data. The confusion matrix showing the performance

f the trained SVM is shown in Fig. 4 . Based on the results provided,

he proposed method performs well for terrain estimation application.

t is important to note that, even though the exact value of the weights

hemselves could depend on the terrain as well as on the characteristics

f the robot including the type of tracks, treads used on the track, pres-

nce or absence of suspension system and their layout. By using labeled

ata collected with the same robotic platform over different terrain con-

itions, the trained SVM is able to disregard the common factors namely
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Fig. 4. Normalized confusion matrix obtained from the trained SVM terrain 

classification. 
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with fast detection of terrain transitions. It should be noted that instead 
he characteristics of the robot, and instead focus on the terrain relevant

eatures for performing better estimation. 

Fig. 5 summarizes the overall approach, including all the steps for the

nline terrain estimation and the offline training that was described in

his section, along with the results that are obtained at each intermedi-

te step. The offline steps for collecting the training data, estimating the

eatures of interest, estimating the principal components from the train-

ng data, and the training of the SVM itself needs to be performed only

nce. These steps have to be repeated only if the locomotion model of

he robot changes, such as in the case of using a car-like robot or if addi-

ional terrain categories need to be added. In contrast to solid mechanics

r finite-element modeling methods the data driven approach presented

ere allows the SVM to learn distinct terrain types based on the labeled
Fig. 5. Flow chart showing the working of the
ata provided during the offline training phase. Even though the a-priori

raining is computationally intensive, it is performed offline, whereas

he computationally efficient estimation can be run in real-time. 

. Validation of the proposed approach 

The performance of the trained SVM for real-time terrain estima-

ion applications was validated using simulated terrain transition data,

enerated from the collected real-world training data. Even though the

raining data was collected by driving the robot on four uniform terrain

onditions separately, the collected data samples from different terrain

onditions could be stacked together to simulate robot motion over vary-

ng terrain conditions. It should be noted that an individual data sample

onsists of pose data (x, y, θ) of the robot at time t and t + Δt , along

ith the control input (V, ω ) . All such data samples collected when the

obot moves over a single terrain condition is referred to as dataset for

 single terrain type in the following discussion. 

The moving window least squires estimation of the weights requires

00 consecutive samples from a single terrain type to perform accu-

ate estimation of the weights. Stacking random individual samples from

ifferent terrain conditions could result in unrealistic estimates of the

eights. The SVM on the other hand looks at each individual sample

f the ten PCs to produce terrain estimations. In order to validate the

erformance of the proposed technique in detecting terrain transitions,

e artificially generated test cases for terrain transitions using the real-

orld data. The weights were estimated from each dataset correspond-

ng to a single terrain type and the PCs were obtained. 500–600 sam-

les of the PCs were then selected from each individual terrain type and

tacked together in a random order such that it would appear as if the

obot was transitioning from one terrain condition to another for the

rained SVM. The trained SVM was used to estimate the terrain condi-

ion from the stacked PCs of the estimated weights and compared with

he ground truth marking on the dataset. The results are shown in Fig. 6 .

It is clear from the results that the proposed approach has the ability

o recognize terrain conditions with a high degree of accuracy, 93.84%,
 proposed terrain estimation algorithm. 
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Fig. 6. Validation of the trained SVM over simulated terrain transition data with 

(a) estimated values of the PCs used by the SVM and (b) the terrain estimation 

results from the SVM. 
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Fig. 7. Experimental setup for the validation of the proposed terrain estimation 

technique on two different cases: (a) asphalt and vinyl concrete floor, (b) vinyl 

concrete flooring and grass–gravel. 

Fig. 8. Validation of the trained SVM through experiments on asphalt and vinyl 

flooring with (a) PCs of the estimated values of the weights used by the SVM 

and (b) terrain estimation results along with ground truth. 

Fig. 9. Validation of the trained SVM through experiments on vinyl flooring 

and grass–gravel with (a) PCs of the estimated values of the weights used by the 

SVM and (b) terrain estimation results along with ground truth. 
f state evolution data, the PCs of the estimated weights were given

irectly to the SVM. As such, the simulation experiments do not reflect

he delay caused by the filter. 

In order to validate the proposed terrain estimation technique, two

ifferent experimental cases were considered. In each case, the robot

as made to run on a region consisting of two different types of ter-

ain. The first case being asphalt and vinyl concrete flooring and the

econd vinyl concrete flooring and grass–gravel. It should be noted that

lthough the experimental validation was performed on the same types

f terrain as in the data collection, it was not performed in the same

ocation. The experimental validation required regions where two dif-

erent terrain conditions were present within the six meter square sens-

ng limits of the POZYX positioning system. On the other hand, training

ata was collected in regions where the terrain conditions were uniform

hroughout. 

The two experimental setups are shown in Fig. 7 . For the experimen-

al validation described here, the robot was manually driven between

he different terrains at relatively low velocity of 0.2–0.5 m/s. As in the

ata collection phase, the POZYX system was set up to record the pose of

he robot at 100 Hz sampling rate. The manual control inputs along with

he state evolution information were used to estimate the weights. Based

n the PCs of the estimated value of the weights the terrain classification

as performed in real-time. The experimental platform, STORM, has an

DROID XU4 computer for onboard processing. Due to the limited com-

utational capability of the onboard computer, the collected data was

ent via ROS [34] to an HP laptop with a 2.6 GHz Intel processor and

GB RAM. The real-time estimation of the weights and the terrain clas-

ification based on the PCs of the estimated weights were performed on

he laptop. Figs. 8 and 9 show the PCs of the estimated value of the

eights used by the SVM along with the estimation results. It should

e noted that for both experiments the transition boundary is a straight

ine, as shown in Fig. 7 . The POZYX absolute positioning system was

etup such that the world coordinate system had one axis parallel to the

errain transition boundary. This allows for easier estimation of ground

ruth terrain condition of the robot. 

The position coordinates of the boundary was measured and

ecorded prior to the experiment. For cases when the robot position

as less than the recorded value, the ground truth was marked as ter-

ain 1. Similarly, when the robot position was greater than the recorded

alue, the ground truth was marked as terrain 2. It should be noted that

he above setup was used solely for ease of marking the ground truth
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Table 2 

Comparison of proposed technique with existing state-of-the-art techniques. 

Sensing modality Output Accuracy Disadvantage 

Radar [7] Binary detection of obstacles 100% when used in combination 

with LIDAR 

Cannot be used as a standalone 

sensor 

Monocular camera [8] Binary detection of traversability 98.53% at pixel level prediction Subject to failure of vision sensors 

such as in presence of fog, smoke 

or dust 

Stereo camera [9] Binary detection of traversability 92% classification accuracy 

Measured soil and wheel 

parameters with classical 

terra-mechanics equations [11] 

Terrain parameter estimation for 

binary detection of traversability 

– Need additional sensors for 

estimating normal force and 

torque on the wheel, wheel 

sinkage etc 

Vibration induced through 

wheel-terrain interaction [13] 

Online identification of terrain: 

sand, gravel, and clay 

96% on sand, 78% on dirt, and 82% 

on gravel 

May not be applicable to tracked 

vehicles as the vibration 

experienced by the tracks are 

influenced by weight of vehicle 

and properties of suspension 

system 

Intelligent tire [21] Classification between asphalt, 

concrete, soil, and grass 

–

Accelerometer attached on a 

tactile probe [14] 

Classification between ten 

different indoor and outdoor 

surfaces 

94.6% success Limits mobility of the vehicle 

Actuator and inertial sensor data 

from vehicle [19] 

Classification between snow 

linoleum, ice, deep water 

90% Designed specifically for rotating 

leg mechanisms 

Proposed technique of using state 

evolution for known control 

commands 

Classification between asphalt, 

grass–gravel, vinyl and artificial 

turf 

90.53% on asphalt and vinyl pair, 

85.33% accuracy on vinyl and 

grass–gravel pair. 

No dedicated sensors needed. 

Capable of working on any 

traversable terrain 
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n  
nd is not a limitation of the proposed terrain estimation method, as it

an detect terrain transition boundaries of any shape. The ground truth,

arked based on the position of the robot, is also overlaid with the es-

imation results. Both the ground truth and the estimations have been

hown only after the first 400 samples have been taken by the estimator

fter the robot started moving. 

For the experimental data, the SVM accuracy came out to be 90.53%

n asphalt and vinyl pair, 85.33% accuracy on vinyl and grass–gravel

air. The lower accuracy of the SVM over the experimental data could

e attributed to the fact that it is operating on the PCs of the weights that

re being estimated in real-time using the moving window approach, as

ompared to the simulation case where the computed PCs were directly

assed into the SVM. As mentioned before, at any given instant, the

oving window estimator looks at 400 samples from the past for esti-

ating the weights. This means that it takes at least four seconds (time

aken to collect 400 data samples) after the robot has moved into the

ew terrain condition for the estimated weights to reflect the change

ccurately. This is evident in Fig. 8 , when the SVM does not immedi-

tely recognize when the robot goes back from the asphalt into vinyl

ooring condition. Similar inference can be drawn from Fig. 9 . In both

ases it takes about 8–15 s for the SVM to accurately predict the ter-

ain condition after the robot has made the transition. Even after the

obot has moved onto the new terrain, it has to move around and col-

ect sufficient data before the estimated weights reflect the change to

he extent that the SVM architecture can make accurate predictions.

he rest of the time delay could be associated with the time taken for

he value of the estimated weights to change, which is dependent on the

errain condition, the robot, and the motion commands being sent to the

obot. 

Prior knowledge about the region having only two kinds of terrain

as leveraged by constraining the classification results to only the can-

idate regions for the duration of the experiment. For example in the

inyl and grass–gravel case, the SVM only chose between vinyl and

rass–gravel based on whichever had the best score. If all four terrain

ypes are included in the classification, it could lower the accuracy of

he classification results as suggested by the confusion matrix shown in

ig. 4 and the simulated terrain transition results shown in Fig. 6 . The

esults presented in Figs. 8 and 9 provide proof-of-concept validation of

he idea that terrain estimation can be performed solely based on the
tate evolution of the robot. Detailed discussion on the potential ways

o improve the terrain classification accuracy is provided in Section 6 . 

It should be noted that since only the PCs of the estimated weights

re passed into the SVM and not the x and y coordinates of the robot, the

lassifier does not learn the coordinates of the regions that correspond

o each terrain condition. This ensures that the learned architecture is

eneralized such that it could be applied when the robot moves over

reviously unseen terrain conditions. 

A summary of state-of-the-art techniques using different sensing

odalities for performing terrain classification and traversability esti-

ation is given in Table 2 . The output from each proposed technique,

heir reported accuracy, and possible disadvantages are also given along

ith the proposed method for comparison. A quantitative comparison

f the proposed technique with existing state-of-the-art terrain estima-

ion techniques is not provided as it depends on many additional factors

ncluding the specifications of the sensor used for collecting data, com-

utational capabilities of the experimental setup, etc. 

As the proposed technique does not require any dedicated sen-

or, a direct quantitative comparison of accuracy is not possible. From

able 2 it can be inferred that the proposed technique performs at least

s good as the state-of-the-art techniques in terms of the number of de-

ected terrain conditions and accuracy. As mentioned previously, the

ajor advantage of the proposed technique is that it does not require

ny dedicated sensing modality which in turn removes associated fail-

re modes, costs, and computational overload. Multi sensor techniques

ould be used for overcoming the limitations of each individual sensing

odality, but this comes with the added cost of sensors and computa-

ional overhead. On the other hand, the proposed technique requires

nly the state evolution of the robot along with the control commands

erformed by the robot, both readily available on all autonomous or

emi-autonomous mobile robots. It should be noted that while this work

eports proof of concept validation of the proposed method, its perfor-

ance in terms of accuracy and number of detected terrain conditions

an be improved with more data. 

. Proposed application to autonomous navigation 

Real-time terrain estimation can be used to improve autonomous

avigation, specifically in control, autonomous path planning, and in
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mproving robot localization. It should be noted that while the tech-

iques proposed in this section have the potential to improve au-

onomous navigation, experimental validation of these techniques is be-

ond the scope this work and will be addressed as part of future work. 

Varying nature of terrain, specifically slip can result in varying tra-

ectory tracking performance of the robot, unless the trajectory tracking

ontroller adjusts the gains according to the nature of the terrain. Pre-

iously an extended Kalman filter based approach toward handling this

ssue was proposed in [35] . Assuming optimal set of gains for each ter-

ain condition is available in the form of a look up table, real-time terrain

stimation can enable the robot to choose the optimal gains for each ter-

ain condition and thereby guarantee optimal performance. Since the

errain estimation approach only relies on the control output (V t , ω t )
nd the state evolution of the robot, the changing gain values on the

rajectory tracking controller will not affect the terrain estimation pro-

ess. 

The proposed real-time terrain estimation techniques can be used to

mprove path planning for field robotic applications such as in search

nd rescue scenarios. As of today, the reported field trails [1,2] have

rimarily relied on the intuition of the remote operator, based on vi-

ual feedback, to decide whether a robot should favor a particular ter-

ain over another. This could be automated by monitoring the estimated

alues of the weights associated with the features of interest. Based on

he deviation of the estimated weights from the ideal unicycle model,

he relative traversability of multiple terrain conditions could be com-

ared. Terrains that deviate more would be less traversable as compared

o terrains that produce closer to ideal weights. For instance, note that

n Fig. 2 the weights corresponding to features having control inputs

V t and 𝜔 t terms) are high for x t+1 , and y t+1 . But for θt+1 , the weights

re relatively low. Based on this, it can be inferred that it is difficult to

urn the robot on asphalt. This was noticed during the experiment as

he minute cracks on the asphalt provide greater resistance to turning

s the wedges on the track become entrenched in them. Similar infer-

nces can be drawn for other terrain conditions as well. This informa-

ion could then be used in autonomous path planning applications by

ssigning a relatively high cost for less traversable terrain conditions.

his allows for a more complete sense of autonomy for rescue robotic

ystems, with lesser reliance on human input. Even in the absence of

bsolute positioning sensors, such as GPS or POZYX, which is usually

he case with disaster scenarios, the weights can be estimated by rely-

ng on visual odometry. Moreover, since this does not require classify-

ng the terrain into previously learned terrain types using the SVM, the

roposed techniques could be applied on previously unseen terrain con-

itions. It should be noted that for the proposed technique to estimates

he weights, the robot must be able to traverse the terrain for a period of

ime. If the terrain condition causes the robot to immediately get stuck,

he proposed technique would fail. 

In addition to the above mentioned applications, terrain estimation

an also be used in localization and mapping, during remote sensing or

hile surveying disaster scenarios. This could be of particular impor-

ance when the robot is moving over unstructured terrain conditions

uch as underground mines, as in the new DARPA challenge [6] . These

egions have no GPS reception, and relying purely on visual odome-

ry methods could lead toward accumulating drift error. On the other

and with real-time terrain recognition, the terrain itself could be used

s landmarks, such that coupled with visual odometry methods precise

ocalization of the robot can be done. 

. Conclusion 

This work aimed at using state evolution of a robot moving over

arying terrain conditions, under known control inputs, to perform real-

ime terrain estimation. The weights in the governing equation for robot

otion were estimated from the state evolution data which was then

ransformed along the PCs and passed on to a trained SVM to generate

he real-time terrain estimates. The proposed approach was validated
ver experimental data collected from four different terrain conditions.

he trained SVM reported accuracy over 80% for simulated and actual

esting. 

This paper presents a proof-of-concept validation of the idea that

errain estimation can be performed solely based on the state evolution

f the robot. Although the experimental validity of the proposed work

as demonstrated using the POZYX system, it should be noted that the

roposed method does not depend on any specific sensing technique.

n fact, the experimental validation shows that the method works well

ith the limited range and noisy output of POZYX. Using a better pose

stimation system such as the LOSA [31] , RTK GPS or Differential GPS

DGPS) is expected to significantly improve the performance of the pro-

osed technique. Detailed analysis on the effect of the various features

f interest and their associated weights on the proposed terrain classi-

cation technique will be analyzed as part of future work along with

etailed experimentation using various position sensing modalities over

 wide variety of terrain and ambient conditions. Further testing with

ifferent kernels for the SVM or using other machine learning techniques

o improve the estimation performance will also be explored in future.

n addition, as mentioned in Section 4 , the robot velocity was kept low

or the data collection as well as the experiments. Recording robot mo-

ion with a wider range of velocities on different terrain conditions can

esult in a richer dataset, allowing the trained SVM to perform better

ith various terrain conditions. 

In addition to the estimated value of the weights, future work will

ook into using additional features of the data including the variance of

he collected parameters, skewness, kurtosis etc., for information about

he terrain. Adding these additional features is expected to improve the

ccuracy of the estimation method based on a preliminary analysis of

he collected data. It should be noted that the as per the above analysis,

he estimated value of the weights can depend on the features of the mo-

ility platform, as much as they depend on the terrain over which the

obot is moving. This in turn opens up possibilities for using the above

ethod as a diagnostic tool in order to gauge the performance of the

obot. Assuming that the terrain conditions remain the same, changes

n the estimated value of the weights can be used to determine the pres-

nce of faults in the robot. For all of the tests conducted as part of this

aper the performance of the mobility platform was assumed to be same,

ut future analysis will focus on using the proposed method for fault de-

ection in the robot. 

Even though this paper explored the use of terrain estimation meth-

ds as applied to a skid steer robot, ongoing work aims at applications

n commercial vehicles such as cars and trucks. The proposed technique

an be used to estimate driving conditions such as presence of snow or

ce on the road and also toward monitoring the conditions of the vehi-

le in real-time. The presence of suspension systems in these vehicles

an adversely affect the performance of terrain estimation methods as it

educes the effect of the terrain on the motion of the vehicle. This may

equire attaching sensors directly to the wheels of the vehicle, before

he suspension system, as explored in [36] . 
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